Skip to main content
Log in

Effect of thermal annealing on crystal evolution and multiple melting behaviors of molded poly(L-lactic acid) and poly(butylene succinate) blends upon heating investigated by TMDSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of post-process annealing treatment on the structural and thermal behaviors of poly(L-lactic acid)/poly(butylene succinate) (PLLA/PBS) blend was investigated by temperature modulated differential scanning calorimetry (TMDSC) and wide-angle X-ray diffractometry. It is shown that the low-order α′-structure of PLLA was formed in the as-molded samples and the molded products annealed at the temperatures below the melting of PBS, whereas the high-order α-crystal was developed when the high temperature of annealing (152 °C) was applied. With the addition of poly(ethylene glycol) plasticizer to the blends, the formation of high-order α-structure was prohibited. During the DSC heating scan, the α′- to α-crystalline phase transformation did not occur. The evidence of multiple melting behaviors observed by TMDSC was ascribed to the simultaneous melting, recrystallization, and remelting of the PLLA and PBS crystals in the blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hartmann MH. High molecular weight polylactic acid polymers. In: Kaplan DL, editor. Biopolymers from renewable resources. Berlin: Springer; 1998. p. 367–411.

    Chapter  Google Scholar 

  2. Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F. Polylactic acid blends: the future of green, light and tough. Prog Polym Sci. 2018;85:83–127.

    Article  CAS  Google Scholar 

  3. Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey M-C. Poly(lactic acid) blends: processing, properties and applications. Int J Biol Macromol. 2019;125:307–60.

    Article  CAS  PubMed  Google Scholar 

  4. Díez-Pascual AM. Synthesis and applications of biopolymer composites. Int J Mol Sci. 2019;20(9):2321.

    Article  PubMed Central  CAS  Google Scholar 

  5. Gendron R, Mihai M. Extrusion foaming of polylactide. In: Lee S-T, editor. Polymeric foams: innovations in processes, technologies, and products. 1st ed. Boca Raton: CRC Press; 2016. p. 123–74.

    Google Scholar 

  6. Signori F, Coltelli MB, Bronco S. Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym Degrad Stab. 2009;94(1):74–82.

    Article  CAS  Google Scholar 

  7. Li FJ, Zhang SD, Liang JZ, Wang JZ. Effect of polyethylene glycol on the crystallization and impact properties of polylactide-based blends. Polym Adv Technol. 2015;26(5):465–75.

    Article  CAS  Google Scholar 

  8. Deng Y, Thomas NL. Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects. Eur Polym J. 2015;71:534–46.

    Article  CAS  Google Scholar 

  9. Lertwongpipat N, Petchwatana N, Covavisaruch S. Enhancing the flexural and impact properties of bioplastic poly(lactic acid) by melt blending with poly(butylene succinate). Adv Mat Res. 2014;931–932:106–10.

    Google Scholar 

  10. Harada M, Ohya T, Iida K, Hayashi H, Hirano K, Fukuda H. Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J Appl Polym Sci. 2007;106(3):1813–20.

    Article  CAS  Google Scholar 

  11. Pivsa-Art W, Fujii K, Nomura K, Aso Y, Ohara H, Yamane H. The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate). J Appl Polym Sci. 2016;133(8):43044.

    Article  CAS  Google Scholar 

  12. Su S, Kopitzky R, Tolga S, Kabasci S. Polylactide (PLA) and its blends with poly(butylene succinate) (PBS): a brief review. Polymers. 2019;11(7):1193.

    Article  PubMed Central  CAS  Google Scholar 

  13. Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37(12):1657–77.

    Article  CAS  Google Scholar 

  14. Pyda M, Wunderlich B. Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC. Macromolecules. 2005;38(25):10472–9.

    Article  CAS  Google Scholar 

  15. De Santis P, Kovacs AJ. Molecular conformation of poly(S-lactic acid). Biopolymers. 1968;6(3):299–306.

    Article  PubMed  Google Scholar 

  16. Eling B, Gogolewski S, Pennings AJ. Biodegradable materials of poly(l-lactic acid): 1. melt-spun and solution-spun fibres. Polymer. 1982;23(11):1587–93.

    Article  CAS  Google Scholar 

  17. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer. 2000;41(25):8909–19.

    Article  CAS  Google Scholar 

  18. Sasaki S, Asakura T. Helix distortion and crystal structure of the α-form of poly(l-lactide). Macromolecules. 2003;36(22):8385–90.

    Article  CAS  Google Scholar 

  19. Hoogsteen W, Postema AR, Pennings AJ, Ten Brinke G, Zugenmaier P. Crystal structure, conformation and morphology of solution-spun poly(l-lactide) fibers. Macromolecules. 1990;23(2):634–42.

    Article  CAS  Google Scholar 

  20. Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, et al. Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules. 2005;38(19):8012–21.

    Article  CAS  Google Scholar 

  21. Pan P, Kai W, Zhu B, Dong T, Inoue Y. Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules. 2007;40(19):6898–905.

    Article  CAS  Google Scholar 

  22. Righetti MC, Gazzano M, Di Lorenzo ML, Androsch R. Enthalpy of melting of α′- and α-crystals of poly(l-lactic acid). Eur Polym J. 2015;70:215–20.

    Article  CAS  Google Scholar 

  23. Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, et al. Crystallization and melting behavior of poly (l-lactic Acid). Macromolecules. 2007;40(26):9463–9.

    Article  CAS  Google Scholar 

  24. Androsch R, Zhuravlev E, Schick C. Solid-state reorganization, melting and melt-recrystallization of conformationally disordered crystals (α′-phase) of poly (l-lactic acid). Polymer. 2014;55(19):4932–41.

    Article  CAS  Google Scholar 

  25. Wang YP, Xiao YJ, Duan J, Yang JH, Wang Y, Zhang CL. Accelerated hydrolytic degradation of poly(lactic acid) achieved by adding poly(butylene succinate). Polym Bull. 2016;73(4):1067–83.

    Article  CAS  Google Scholar 

  26. Yokohara T, Yamaguchi M. Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J. 2008;44(3):677–85.

    Article  CAS  Google Scholar 

  27. Wang R, Wang S, Zhang Y, Wan C, Ma P. Toughening modification of PLLA/PBS blends via in situ compatibilization. Polym Eng Sci. 2009;49(1):26–33.

    Article  CAS  Google Scholar 

  28. Park JW, Im SS. Morphological changes during heating in poly(l-lactic acid)/poly(butylene succinate) blend systems as studied by synchrotron X-ray scattering. J Polym Sci B Polym Phys. 2002;40(17):1931–9.

    Article  CAS  Google Scholar 

  29. Verdonck E, Schaap K, Thomas LC. A discussion of the principles and applications of modulated temperature DSC (MTDSC). Int J Pharm. 1999;192(1):3–20.

    Article  CAS  PubMed  Google Scholar 

  30. Lacey AA, Price DM, Reading M. Theory and practice of modulated temperature differential scanning calorimetry. In: Reading M, Hourston DJ, editors. Modulated temperature differential scanning calorimetry: theoretical and practical applications in polymer. Hot topics in thermal analysis and calorimetry. Dordrecht: Springer; 2006. p. 1–81.

    Google Scholar 

  31. Qiu Z, Komura M, Ikehara T, Nishi T. DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer. 2003;44(26):7781–5.

    Article  CAS  Google Scholar 

  32. Qiu Z, Miao L, Yang W. Crystallization and melting behavior of biodegradable poly(butylene succinate-co-butylene carbonate). J Polym Sci B Polym Phys. 2006;44(11):1556–61.

    Article  CAS  Google Scholar 

  33. Wang ZG, Hsiao BS, Sauer BB, Kampert WG. The nature of secondary crystallization in poly(ethylene terephthalate). Polymer. 1999;40(16):4615–27.

    Article  CAS  Google Scholar 

  34. Malmgren T, Mays J, Pyda M. Characterization of poly(lactic acid) by size exclusion chromatography, differential refractometry, light scattering and thermal analysis. J Therm Anal Calorim. 2006;83(1):35–40.

    Article  CAS  Google Scholar 

  35. Salmerón Sánchez M, Gómez Ribelles JL, Hernández Sánchez F, Mano JF. On the kinetics of melting and crystallization of poly(l-lactic acid) by TMDSC. Thermochim Acta. 2005;430(1):201–10.

    Article  CAS  Google Scholar 

  36. Thomas LC. Modulated DSC® Paper #1 Why Modulated DSC®?; An Overview and Summary of Advantages and Disadvantages Relative to Traditional DSC. New Castle, DE: TA Instruments Technical Paper; 2005.

  37. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. Nucleating agent for poly(l-lactic acid)—an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci. 2007;103:198–203.

    Article  CAS  Google Scholar 

  38. Zhang C, Lan Q, Zhai T, Nie S, Luo J, Yan W. Melt crystallization behavior and crystalline morphology of polylactide/poly (ε-caprolactone) blends compatibilized by lactide-caprolactone copolymer. Polymers. 2018;10(11):1181.

    Article  PubMed Central  CAS  Google Scholar 

  39. Mano JF, Wang Y, Viana JC, Denchev Z, Oliveira MJ. Cold crystallization of PLLA studied by simultaneous SAXS and WAXS. Macromol Mater Eng. 2004;289(10):910–5.

    Article  CAS  Google Scholar 

  40. Kampert WG, Sauer BB. Temperature modulated DSC studies of melting and recrystallization in poly(ethylene-2,6-naphthalene dicarboxylate) (PEN) and blends with poly(ethylene terephthalate) (PET). Polymer. 2001;42(21):8703–14.

    Article  CAS  Google Scholar 

  41. Kampert WG, Sauer BB. Temperature modulated DSC studies of melting and recrystallization in poly (oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) (PEEK). Polym Eng Sci. 2001;41(10):1714–30.

    Article  CAS  Google Scholar 

  42. Wunderlich B. One hundred years research on supercooling and superheating. Thermochim Acta. 2007;461(1):4–13.

    Article  CAS  Google Scholar 

  43. Sauer BB, Kampert WG, Neal Blanchard E, Threefoot SA, Hsiao BS. Temperature modulated DSC studies of melting and recrystallization in polymers exhibiting multiple endotherms. Polymer. 2000;41(3):1099–108.

    Article  CAS  Google Scholar 

  44. Okazaki I, Wunderlich B. Reversible local melting in polymer crystals. Macromol Rapid Commun. 1997;18(4):313–8.

    Article  CAS  Google Scholar 

  45. Liu G, Zheng L, Zhang X, Li C, Wang D. Critical stress for crystal transition in poly(butylene succinate)-based crystalline–amorphous multiblock copolymers. Macromolecules. 2014;47(21):7533–9.

    Article  CAS  Google Scholar 

  46. Qiu Z, Ikehara T, Nishi T. Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide). Polymer. 2003;44(9):2799–806.

    Article  CAS  Google Scholar 

  47. Tábi T, Hajba S, Kovács JG. Effect of crystalline forms (α ′ and α) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. Eur Polym J. 2016;82:232–43.

    Article  CAS  Google Scholar 

  48. Yoo ES, Im SS. Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polym Sci B Polym Phys. 1999;37(13):1357–66.

    Article  CAS  Google Scholar 

  49. Zhang J, Tashiro K, Tsuji H, Domb AJ. Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules. 2008;41(4):1352–7.

    Article  CAS  Google Scholar 

  50. Androsch R, Schick C, Di Lorenzo ML. Melting of conformationally disordered crystals (α′-phase) of poly(l-lactic acid). Macromol Chem Phys. 2014;215(11):1134–9.

    Article  CAS  Google Scholar 

  51. Androsch R, Zhang R, Schick C. Melt-recrystallization of poly (l-lactic acid) initially containing α′-crystals. Polymer. 2019;176:227–35.

    Article  CAS  Google Scholar 

  52. Pan P, Zhu B, Kai W, Dong T, Inoue Y. Polymorphic transition in disordered poly(l-lactide) crystals induced by annealing at elevated temperatures. Macromolecules. 2008;41(12):4296–304.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Council of Thailand (NRCT) under the Research University Network Initiative. The authors would like to express gratitude to the Central Instrument Facility (CIF) and the Rubber Technology Research Center (RTEC) at Faculty of Science, Mahidol University for providing the supports in terms of research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyanee Sirisinha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajornprai, T., Sirisinha, K. Effect of thermal annealing on crystal evolution and multiple melting behaviors of molded poly(L-lactic acid) and poly(butylene succinate) blends upon heating investigated by TMDSC. J Therm Anal Calorim 146, 2471–2480 (2021). https://doi.org/10.1007/s10973-021-10629-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10629-1

Keywords

Navigation