Skip to main content
Log in

Calorimetric approach to establishing thermokinetics for cosmeceutical benzoyl peroxides containing metal ions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cosmeceutical products have improved over the years; however, the explosions and fire accidents in cosmeceutical factories worldwide have not ceased. Literature researches on this genre of potential risk have been seldom published. Cosmeceutical benzoyl peroxide (CBPO) is usually used on facial products, especially for acne treatment. The thermal stability of CBPO with additions and calorimetric technology is utilized to obtain the thermal stability and reaction characteristics. Depending on the experimental thermal stability parameters, apparent activation energy was calculated by various integral and differential kinetic models. Uniting the isoconversional kinetic analysis and numerical simulation of the isothermal condition can better realize the decomposition characteristics and potential process risk. Dozens of milligrams of CBPO were dunked with 10,000 ppm of Cu, Fe, and Zn to inspect the exothermal behavior. The findings can be a reference for the essential safety parameters and customer safety design for the database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

∆H d :

Heat of decomposition (J g‒1)

A :

Frequency factor (1 s‒1)

C :

Constant (dimensionless)

C s :

Constant for Starink method (dimensionless)

D :

Correction coefficient for apparent activation energy (dimensionless)

E a :

Apparent activation energy (kJ mol‒1)

f(α):

Differential form of reaction mechanism function (dimensionless)

g(α):

Integral form of reaction mechanism function (dimensionless)

i :

The power of absolute temperature in Starink (dimensionless)

p(x):

Integral temperature

R :

Universal gas constant [8.314 J (mol K)‒1]

R 2 :

Coefficient of determination (dimensionless)

SADT :

Self-accelerating decomposition temperature (°C)

t :

Time (min)

T :

Absolute temperature (K)

T 0 :

Apparent onset temperature (°C)

TCL :

Time to conversion limit (day)

TMR iso :

Time to the maximum rate at isothermal conditions (h)

T f :

Final reaction temperature (°C)

T p :

Peak temperature (°C)

α :

Extent of conversion (dimensionless)

β :

Heating rate (°C min‒1)

References

  1. Lin T, Zhang M, Xu F, Wang X, Xu Z, Guo L. Colorimetric detection of benzoyl peroxide based on the etching of silver nanoshells of Au@Ag nanorods. Sens Actuators B. 2018;261:379–84.

    Article  CAS  Google Scholar 

  2. Lu KT, Chen TC, Hu KH. Investigation of the decomposition reaction and dust explosion characteristics of crystalline benzoyl peroxides. J Hazard Mater. 2009;161:246–56.

    Article  CAS  Google Scholar 

  3. Huang AC, Chuang YK, Huang CF, Shu CM. Thermokinetic analysis of the stability of malic and salicylic acids in cosmeceutical formulations containing metal oxides. J Therm Anal Calorim. 2017;132:165–72.

    Article  Google Scholar 

  4. Zhang Y, Chen R, Zhao M, Luo J, Feng W, Fan W, et al. Hazard evaluation of explosion venting behaviours for premixed hydrogen-air fuels with different bursting pressures. Fuel. 2020;268:117313.

    Article  CAS  Google Scholar 

  5. Huang AC, Chen WC, Huang CF, Zhao JY, Deng J, Shu CM. Thermal stability simulations of 1,1-bis(tert-butylperoxy)-3,3,5 trimethylcyclohexane mixed with metal ions. J Therm Anal Calorim. 2017;130:949–57.

    Article  CAS  Google Scholar 

  6. Liu SH, Hou HY, Shu CM. Thermal hazard evaluation of the autocatalytic reaction of benzoyl peroxide using DSC and TAM III. Thermochim Acta. 2015;605:68–76.

    Article  CAS  Google Scholar 

  7. Cao CR, Liu SH, Das M, Shu CM. Evaluation for the thermokinetics of the autocatalytic reaction of cumene hydroperoxide mixed with phenol through isothermal approaches and simulations. Process Saf Environ Prot. 2018;117:426–38.

    Article  CAS  Google Scholar 

  8. Cao CR, Liu SH, Huang AC, Lee MH, Ho SP, Yu WL, et al. Application of thermal ignition theory of di(2,4-dichlorobenzoyl) peroxide by kinetic-based curve fitting. J Therm Anal Calorim. 2018;133:753–61.

    Article  CAS  Google Scholar 

  9. Huang AC, Huang CF, Xing ZX, Jiang JC, Shu CM. Thermal hazard assessment of the thermal stability of acne cosmeceutical therapy using advanced calorimetry technology. Process Saf Environ Prot. 2019;131:197–204.

    Article  CAS  Google Scholar 

  10. Huang AC, Huang CF, Tang Y, Xing ZX, Jiang JC. Evaluation of multiple reactions in dilute benzoyl peroxide concentrations with additives using calorimetric technology. J Loss Prev Process Ind. 2021;69:104373.

    Article  CAS  Google Scholar 

  11. Tan J, Bissonnette R, Gratton D, Kerrouche N, Canosa JM. The safety and efficacy of four different fixed combination regimens of adapalene 0.1%/benzoyl peroxide 2.5% gel for the treatment of acne vulgaris: results from a randomised controlled study. Eur J Dermatol. 2018;28:502–8.

  12. Osman-Ponchet H, Sevin K, Gaborit A, Wagner N, Poncet M. Fixed-combination gels of adapalene and benzoyl peroxide provide optimal percutaneous absorption compared to monad formulations of these compounds: results from two in vitro studies. Dermatol Ther (Heidelb). 2017;7:123–31.

    Article  Google Scholar 

  13. You ML. Thermal hazard evaluation of cumene hydroperoxide-metal ion mixture using DSC, TAM III, and GC/MS. Molecules. 2016;21:562.

    Article  Google Scholar 

  14. Duh YS. Chemical kinetics on thermal decompositions of cumene hydroperoxide in cumene studied by calorimetry: an overview. Thermochim Acta. 2016;637:102–9.

    Article  CAS  Google Scholar 

  15. Wang Q, Liu SH, Huang AC, Huang CF, Chuang YK, Shu CM. Effects of mixing malic acid and salicylic acid with metal oxides in medium- to low-temperature isothermal conditions, as determined using the thermal activity monitor IV. J Therm Anal Calorim. 2018;133:779–84.

    Article  CAS  Google Scholar 

  16. Wei M, Huang AC, Shu CM, Zhang L. Thermal decomposition and nonisothermal kinetics of monoethanolamine mixed with various metal ions. Sci Rep. 2019;9:1592.

    Article  CAS  Google Scholar 

  17. Yang Y, Tsai YT, Zhang YN, Shu CM, Deng J. Inhibition of spontaneous combustion for different metamorphic degrees of coal using Zn/Mg/Al–CO3 layered double hydroxides. Process Saf Environ Prot. 2018;113:401–12.

    Article  CAS  Google Scholar 

  18. Tsai YT, Yang Y, Huang HC, Shu CM. Inhibitory effects of three chemical dust suppressants on nitrocellulose dust cloud explosion. AlChE J. 2020;66:e16888.

    CAS  Google Scholar 

  19. Tsai YT, Yang Y, Wang CP, Shu CM, Deng J. Comparison of the inhibition mechanisms of five types of inhibitors on spontaneous coal combustion. Int J Energy Res. 2018;42:1158–71.

    Article  CAS  Google Scholar 

  20. Shiue GY, Huang AC, Chen JR. Thermal decomposition of triacetone triperoxide by differential scanning calorimetry. J Therm Anal Calorim. 2018;133:745–51.

    Article  CAS  Google Scholar 

  21. Tsai YT, You ML, Qian XM, Shu CM. Calorimetric techniques combined with various thermokinetic models to evaluate incompatible hazard oftert-butyl peroxy-2-ethyl hexanoate mixed with metal ions. Ind Eng Chem Res. 2013;52:8206–15.

    Article  CAS  Google Scholar 

  22. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  23. Vyazovkin S. Kissinger method in kinetics of materials: Things to beware and be aware of. Molecules. 2020;25:2813.

    Article  CAS  Google Scholar 

  24. Liu SH, Cao CR, Lin WC, Shu CM. Experimental and numerical simulation study of the thermal hazards of four azo compounds. J Hazard Mater. 2019;365:164–77.

    Article  CAS  Google Scholar 

  25. Deng J, Zhao JY, Huang AC, Zhang YN, Wang CP, Shu CM. Thermal behavior and microcharacterization analysis of second-oxidized coal. J Therm Anal Calorim. 2016;127:439–48.

    Article  Google Scholar 

  26. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  27. Laiwang B, Liu SH, Shu CM. Thermal hazards of benzoyl peroxide and its derived process products through theoretical thermodynamics assessment and different calorimetric technologies. J Hazard Mater. 2019;380:120891.

    Article  Google Scholar 

  28. Wang J, Jia H, Tang Y, Xiong X, Ding L. Thermal stability and non-isothermal crystallization kinetics of metallocene poly(ethylene–butene–hexene)/high fluid polypropylene copolymer blends. Thermochim Acta. 2017;647:55–61.

    Article  CAS  Google Scholar 

  29. Deng J, Zhao JY, Xiao Y, Zhang YN, Huang AC, Shu CM. Thermal analysis of the pyrolysis and oxidation behaviour of 1/3 coking coal. J Therm Anal Calorim. 2017;129:1779–86.

    Article  CAS  Google Scholar 

  30. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  31. Xiao Y, Lü HF, Huang AC, Deng J, Shu CM. A new numerical method to predict the growth temperature of spontaneous combustion of 1/3 coking coal. Appl Therm Eng. 2018;131:221–9.

    Article  CAS  Google Scholar 

  32. Laiwang B, Tsai YT, Liu SH, Deng J, Xiao Y, Wang QH, et al. Effects of 1-butyl-3-methylimidazolium nitrate on the thermal hazardous properties of lignitous and long flame coal through a green approach and thermokinetic models. Process Saf Environ Prot. 2019;131:127–34.

    Article  CAS  Google Scholar 

  33. Zhang Y, Chung YH, Liu SH, Shu CM, Jiang JC. Analysis of thermal hazards of O, O-dimethylphosphoramidothioate by DSC, TG, VSP2, and GC/MS. Thermochim Acta. 2017;652:69–76.

    Article  CAS  Google Scholar 

  34. Malow M, Michael-Schulz H, Wehrstedt KD. Evaluative comparison of two methods for SADT determination (UN H.1 and H.4). J Loss Prev Process Ind. 2010;23:740–4.

Download references

Acknowledgements

National Nature Science Foundation of China financially (Nos. 21927815 and 51574046) and National Key Research Development Program of China (No. 2019YFC0810701) supported this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chung-Fu Huang, Yan Tang or Chi-Min Shu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, AC., Liao, FC., Huang, CF. et al. Calorimetric approach to establishing thermokinetics for cosmeceutical benzoyl peroxides containing metal ions. J Therm Anal Calorim 144, 373–382 (2021). https://doi.org/10.1007/s10973-021-10703-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10703-8

Keywords

Navigation