Skip to main content
Log in

Measurement of thermal conductivity and viscosity of ZnO–SiO2 hybrid nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Preparing and defining of thermal properties of new type hybrid nanofluids are essential to understand the fluidity mechanism of hybrid nanofluids and select suitable nanofluids in terms of application. This research aims to provide an alternative fluid for different applications and complete the new type of nanofluid necessity in the literature that has been reported by different research groups. In this current investigation, water-based ZnO–SiO2 hybrid nanofluid is prepared by using the two-step method, and thermal conductivity and dynamic viscosity values are experimentally specified. ZnO–SiO2 hybrid nanofluid has 0.5%, 0.75%, and 1% with 50% ZnO-50% SiO2; 33.3% ZnO-66.6% SiO2, and 66.6% ZnO-33.3% SiO2 nanoparticle mixtures. Thermal conductivity and dynamic viscosity are experimentally measured from 20 to 60 °C. Maximum thermal conductivity rising is 2.26%, and it is obtained for 1% ZnO0.66–SiO 0.332 at 50 °C. Maximum dynamic viscosity increment is measured as 1.36 times of base fluid for 1% ZnO0.33–SiO 0.662 at 50 °C. Changes in thermal properties are reasonable to use ZnO–SiO2 hybrid nanofluid in different thermal applications to increase system heat transfer rate and efficiency and reduce pressure drop and power consumption. Finally, two different regression equations are developed to predict the thermal conductivity and dynamic viscosity, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A.D.:

Average deviation

Al2O3 :

Aluminum oxide

c :

Constant of viscometer, (cSt s1)

C.D.:

Coefficient of determination

CNT:

Carbon nanotube

Cp :

Specific heat, (J kg1 K1)

CuO:

Copper(II) oxide

d:

Diameter (m)

DWCNTs:

Double-walled carbon nanotubes

e :

Euler's number

EG:

Ethylene glycol

k:

Thermal conductivity (W m1 K1)

K H :

The shape factor of the particle

m:

Mass (kg)

M.D.:

Maximum deviation

MWCNTs:

Multi-walled carbon nanotubes

R:

Mixture ratio

R113:

1,1,2-Trichlorotrifluoroethane (Cl2FC-CClF2)

S.D.:

Standard deviation

S.E.:

Standard error

SiO2 :

Silicon dioxide

T:

Temperature (°C)

t :

Efflux time (s)

TiO2 :

Titanium dioxide

TK :

Temperature (K)

TK0 :

Reference temperature, (273 K)

w :

Mass fraction of nanoparticles

ZnO:

Zinc oxide

ZnO 0.33-SiO 0.662 :

33.3% ZnO, 66.6% SiO2

ZnO 0.50-SiO 0.502 :

50% ZnO, 50% SiO2

ZnO 0.66-SiO 0.332 :

66.6% ZnO, 33.3% SiO2

µ :

Dynamic viscosity (mPa s)

ɸ :

Volume concentration (%)

α:

Thermal diffusivity (m2 s–1)

β :

Fraction of liquid volume traveling with a particle

κ:

Boltzmann constant, (1.381 × 1023 J K–1)

ρ:

Density (kg m–3)

bf:

Base fluid

exp:

Experimental data

nf:

Nanofluid

np:

Nanoparticle

p:

Particle

r:

Relative

reg.eq.:

Regression equation

w:

Water

References

  1. Sidik NAC, Jamil MM, Japar WMAA, Adamu IM. A review on preparation methods, stability and applications of hybrid nanofluids. Renew Sustain Energy Rev. 2017. https://doi.org/10.1016/j.rser.2017.05.221.

    Article  Google Scholar 

  2. Choi SUS, Eastmen JA. Enhancing thermal conductivity of fluids with nanoparticles. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED. 1995; 231:99–105.

  3. Naphon P, Klangchart S, Wongwises S. Numerical investigation on the heat transfer and flow in the mini-fin heat sink for CPU. Int Commun Heat Mass Transfer. 2009. https://doi.org/10.1016/j.icheatmasstransfer.2009.06.010.

    Article  Google Scholar 

  4. Sundar LS, Ramana EV, Graça MPF, Singh MK, Sousa ACM. Nanodiamond-Fe3O4 nanofluids: Preparation and measurement of viscosity, electrical and thermal conductivities. Int Commun Heat Mass Transfer. 2016. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.013.

    Article  Google Scholar 

  5. Nguyen CT, Roy G, Gauthier C, Galanis N. Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system. Appl Therm Eng. 2007. https://doi.org/10.1016/j.applthermaleng.2006.09.028.

    Article  Google Scholar 

  6. Wu S, Zhu D, Li X, Li H, Lei J. Thermal energy storage behavior of Al2O3-H2O nanofluids. Thermochim Acta. 2009. https://doi.org/10.1016/j.tca.2008.11.006.

    Article  Google Scholar 

  7. Jiang W, Ding G, Peng H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. Int J Therm Sci. 2009. https://doi.org/10.1016/j.ijthermalsci.2008.11.012.

    Article  Google Scholar 

  8. Tzeng SC, Lin CW, Huang KD. Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles. Acta Mech. 2005. https://doi.org/10.1007/s00707-005-0248-9.

    Article  Google Scholar 

  9. Srikant RR, Rao DN, Subrahmanyam MS, Krishna PV. Applicability of cutting fluids with nanoparticle inclusion as coolants in machining. Proc Instit Mech Eng Part J J Eng Tribol. 2009; https://doi.org/10.1243/13506501JET463

  10. Kulkarni DP, Vajjha RS, Das DK, Oliva D. Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Appl Therm Eng. 2008. https://doi.org/10.1016/j.applthermaleng.2007.11.017.

    Article  Google Scholar 

  11. Khanjari Y, Kasaeian AB, Pourfayaz F. Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2016.12.104.

    Article  Google Scholar 

  12. Pantzali MN, Mouza AA, Paras SV. Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chem Eng Sci. 2009. https://doi.org/10.1016/j.ces.2009.04.004.

    Article  Google Scholar 

  13. Zhang L, Ding Y, Povey M, York D. ZnO nanofluids-A potential antibacterial agent. Prog Nat Sci. 2008. https://doi.org/10.1016/j.pnsc.2008.01.026.

    Article  Google Scholar 

  14. Hadad K, Rahimian A, Nematollahi MR. Numerical study of single and two-phase models of water/Al 2O3 nanofluid turbulent forced convection flow in VVER-1000 nuclear reactor. Ann Nucl Energy. 2013. https://doi.org/10.1016/j.anucene.2013.05.017.

    Article  Google Scholar 

  15. Pang C, Jung JY, Lee JW, Kang YT. Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles. Int J Heat Mass Transf. 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.048.

    Article  Google Scholar 

  16. Mostafizur RM, Aziz ARA, Saidur R, Bhuiyan MHU. Investigation on stability and viscosity of SiO2-CH3OH (methanol) nanofluids. Int Commun Heat Mass Transfer. 2016. https://doi.org/10.1016/j.icheatmasstransfer.2016.01.001.

    Article  Google Scholar 

  17. Guo W, Li G, Zheng Y, Dong C. Measurement of the thermal conductivity of SiO2 nanofluids with an optimized transient hot wire method. Thermochim Acta. 2018. https://doi.org/10.1016/j.tca.2018.01.008.

    Article  Google Scholar 

  18. Pastoriza-Gallego MJ, Lugo L, Cabaleiro D, Legido JL, Piñeiro MM. Thermophysical profile of ethylene glycol-based ZnO nanofluids. J Chem Thermodyn. 2014. https://doi.org/10.1016/j.jct.2013.07.002.

    Article  Google Scholar 

  19. Lee GJ, Kim CK, Lee MK, Rhee CK, Kim S, Kim C. Thermal conductivity enhancement of ZnO nanofluid using a one-step physical method. Thermochim Acta. 2012. https://doi.org/10.1016/j.tca.2012.01.010.

    Article  Google Scholar 

  20. Suganthi KS, Vinodhan VL, Rajan KS. Heat transfer performance and transport properties of ZnO-ethylene glycol and ZnO-ethylene glycol-water nanofluid coolants. Appl Energy. 2014. https://doi.org/10.1016/j.apenergy.2014.09.023.

    Article  Google Scholar 

  21. Moldoveanu GM, Huminic G, Minea AA, Huminic A. Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int J Heat Mass Transf. 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.024.

    Article  Google Scholar 

  22. Minea AA. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches. Int J Heat Mass Transf. 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.012.

    Article  Google Scholar 

  23. Dalkılıç AS, Açıkgöz Ö, Küçükyıldırım BO, Eker AA, Lüleci B, Jumpholkul C, Wongwises S. Experimental Investigation on the Viscosity characteristics of water based SiO2-Graphite hybrid nanofluids. Int J Heat Mass Transf. 2018. https://doi.org/10.1016/j.icheatmasstransfer.2018.07.007.

    Article  Google Scholar 

  24. Akilu S, Baheta AT, Said MAM, Minea AA, Sharma KV. Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport. Sol Energy Mater Sol Cells. 2018. https://doi.org/10.1016/j.solmat.2017.10.027.

    Article  Google Scholar 

  25. Yıldız Ç, Arıcı M, Karabay H. Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of Al2O3-SiO2/water hybrid-nanofluid. Int J Heat Mass Transf. 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.028.

    Article  Google Scholar 

  26. Kumar RS, Sharma T. Stability and rheological properties of nanofluids stabilized by SiO2 nanoparticles and SiO2-TiO2 nanocomposites for oilfield applications. Colloids Surf A. 2018. https://doi.org/10.1016/j.colsurfa.2017.12.028.

    Article  Google Scholar 

  27. Esfe MH, Yan WM, Akbari M, Karimipour A, Hassani M. Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Heat Transfer Research. 2015. https://doi.org/10.1016/j.icheatmasstransfer.2015.09.001.

    Article  Google Scholar 

  28. Asadi M, Asadi A. Dynamic viscosity of MWCNT/ZnO-engine oil hybrid nanofluid: An experimental investigation and new correlation in different temperatures and solid concentrations. Int Commun Heat Mass Transfer. 2016. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.019.

    Article  Google Scholar 

  29. Giwa SO, Momin M, Nwaokocha CN, Sharifpur M, Meyer JP. Influence of nanoparticles size, per cent mass ratio, and temperature on the thermal properties of water-based MgO–ZnO nanofluid: an experimental approach. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-09870-x.

    Article  Google Scholar 

  30. Wole-Osho I, Okonkwo EC, Kavaz D, Abbasoglu S. An experimental investigation into the effect of particle mixture ratio on specific heat capacity and dynamic viscosity of Al2O3-ZnO hybrid nanofluids. Powder Technol. 2020. https://doi.org/10.1016/j.powtec.2020.01.015.

    Article  Google Scholar 

  31. Ruhani B, Toghraie D, Hekmatifar M, Hadian M. Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/Water hybrid Newtonian nanofluid using experimental data. Physica A. 2019. https://doi.org/10.1016/j.physa.2019.03.118.

    Article  Google Scholar 

  32. Esfe MH, Arani AAA, Firouzi M. Empirical study and model development of thermal conductivity improvement and assessment of cost and sensitivity of EG-water based SWCNT-ZnO (30%:70%) hybrid nanofluid. J Mol Liq. 2017. https://doi.org/10.1016/j.molliq.2017.08.087.

    Article  Google Scholar 

  33. Maheshwary PB, Handa CC, Nemade KR. A comprehensive study of effect of concentration, particle size and particle shape on thermal conductivity of titania/water based nanofluid. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.03.054.

    Article  Google Scholar 

  34. Suganthi KS, Rajan KS. Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew Sustain Energy Rev. 2017. https://doi.org/10.1016/j.rser.2017.03.043.

    Article  Google Scholar 

  35. Yu F, Chen Y, Liang X, Xu J, Lee C, Liang Q, Tao P, Deng T. Dispersion stability of thermal nanofluids. Progress Nat Sci Mater Int. 2017. https://doi.org/10.1016/j.pnsc.2017.08.010.

    Article  Google Scholar 

  36. Chen D, Vasco DA, Hidalgo MDC, Guzmán AM. Electrorepulsion In Nanofluids: Experimental Characterization For A Stable Behavior. ASME 6th International Conference on Micro/Nanoscale Heat and Mass Transfer. 2019; https://doi.org/10.1115/MNHMT2019-3980

  37. Chen D, Martínez VA, Vasco DA, Guzmán AM. Experimental investigation of viscosity, enhanced thermal conductivity and zeta potential of a TiO2 electrolyte – based nanofluid. Int Commun Heat Mass Transfer. 2020. https://doi.org/10.1016/j.icheatmasstransfer.2020.104840.

    Article  Google Scholar 

  38. Wanatasanappan VV, Abdullah MZ, Gunnasegaran P. Thermophysical properties of Al2O3-CuO hybrid nanofluid at different nanoparticle mixture ratio: An experimental approach. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2020.113458.

    Article  Google Scholar 

  39. Xuan Z, Zhai Y, Ma M, Li Y, Wang H. Thermo-economic performance and sensitivity analysis of ternary hybrid nanofluids. J Mol Liq. 2021. https://doi.org/10.1016/j.molliq.2020.114889.

    Article  Google Scholar 

  40. Apmann K, Fulmer R, Soto A, Vafaei S. Thermal conductivity and viscosity: Review and optimization of effects of nanoparticles. Materials. 2021. https://doi.org/10.3390/ma14051291.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wanatasanapan VV, Abdullah MZ, Gunnasegaran P. Effect of TiO2-Al2O3nanoparticle mixing ratio on the thermal conductivity, rheological properties, and dynamic viscosity of water-based hybrid nanofluid. J Market Res. 2020. https://doi.org/10.1016/j.jmrt.2020.09.127.

    Article  Google Scholar 

  42. Asokan N, Gunnasegaran P, Wanatasanappan VV. Experimental investigation on the thermal performance of compact heat exchanger and the rheological properties of low concentration mono and hybrid nanofluids containing Al2O3 and CuO nanoparticles. Thermal Sci Eng Progress. 2020. https://doi.org/10.1016/j.tsep.2020.100727.

    Article  Google Scholar 

  43. Tiwar AK, Kumar V, Said Z, Paliwal HK. A review on the application of hybrid nanofluids for parabolic trough collector: Recent progress and outlook. J Clean Prod. 2021. https://doi.org/10.1016/j.jclepro.2021.126031.

    Article  Google Scholar 

  44. Hamid KA, Azmi WH, Nabil MF, Mamat R, Sharma KV. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. Int J Heat Mass Transf. 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.087.

    Article  Google Scholar 

  45. Khodadadi H, Aghakhani S, Majd H, Kalbasi R, Wongwises S, Afrand M. A comprehensive review on rheological behavior of mono and hybrid nanofluids: Effective parameters and predictive correlations. Int J Heat Mass Transf. 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.103.

    Article  Google Scholar 

  46. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: Recent research, development and applications. Renew Sustain Energy Rev. 2015. https://doi.org/10.1016/j.rser.2014.11.023.

    Article  Google Scholar 

  47. Sharma AK, Tiwari AK, Dixit AR. Rheological behaviour of nanofluids: A review. Renew Sustain Energy Rev. 2016. https://doi.org/10.1016/j.rser.2015.09.033.

    Article  Google Scholar 

  48. Gupta M, Singh V, Kumar S, Kumar S, Dilbaghi N, Said Z. Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. J Clean Prod. 2018. https://doi.org/10.1016/j.jclepro.2018.04.146.

    Article  Google Scholar 

  49. Babu JAR, Kumar KK, Rao SS. State-of-art review on hybrid nanofluids. Renew Sustain Energy Rev. 2017. https://doi.org/10.1016/j.rser.2017.04.040.

    Article  Google Scholar 

  50. Huminic G, Huminic A. Hybrid nanofluids for heat transfer applications - A state-of-the-art review. Int J Heat Mass Transf. 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.059.

    Article  Google Scholar 

  51. Sidik NAC, Adamu IM, Jamil MM, Kefayati GHR, Mamat R, Najafi G. Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review. Int Commun Heat Mass Transfer. 2016. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.019.

    Article  Google Scholar 

  52. Taherialekouhi R, Rasouli S, Khosravi A. An experimental study on stability and thermal conductivity of water-graphene oxide/aluminum oxide nanoparticles as a cooling hybrid nanofluid. Int J Heat Mass Transf. 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118751.

    Article  Google Scholar 

  53. Dalkılıç AS, Yalçın G, Küçükyıldırım BO, Öztuna S, Eker AA, Jumpholkul C, Nakkaew S, Wongwises S. Experimental study on the thermal conductivity of water-based CNT-SiO2 hybrid nanofluids. Int Commun Heat Mass Transfer. 2018. https://doi.org/10.1016/j.icheatmasstransfer.2018.10.002.

    Article  Google Scholar 

  54. Ahmadi MH, Sadeghzadeh M, Maddah H, Solouk A, Kumar R, Chau KW. Precise smart model for estimating dynamic viscosity of SiO2/ethylene glycol-water nanofluid. Eng Appl Computl Fluid Mech. 2019. https://doi.org/10.1080/19942060.2019.1668303.

    Article  Google Scholar 

  55. Carbajal-Valdéz R, Rodríguez-Juárez A, Jiménez-Pérez JL, Sánchez-Ramírez JF, Cruz-Orea A, Correa-Pacheco ZN, Macias M, Luna-Sánchez JL. Experimental investigation on thermal properties of Ag nanowire nanofluids at low concentrations. Thermochim Acta. 2019. https://doi.org/10.1016/j.tca.2018.11.015.

    Article  Google Scholar 

  56. Kumar DD, Arasu AV. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew Sustain Energy Rev. 2018. https://doi.org/10.1016/j.rser.2017.05.257.

    Article  Google Scholar 

  57. Munkhbayar B, Tanshen MR, Jeoun J, Chung H, Jeong H. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram Int. 2013. https://doi.org/10.1016/j.ceramint.2013.01.069.

    Article  Google Scholar 

  58. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998. https://doi.org/10.1080/08916159808946559.

    Article  Google Scholar 

  59. ASHRAE Handbook: Refrigeration, American Society of Heating, Refrigerating and Air Conditioning Engineers. Atlanta: ASHRAE Inc; (2009).

  60. ASHRAE Handbook: Fundamentals, American Society of Heating, Refrigerating and Air Conditioning Engineers. Atlanta: ASHRAE Inc; (2005).

  61. Lee JH, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SUS, Choi CJ. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026.

    Article  Google Scholar 

  62. Sonawane SS, Khedkar RS, Wasewar KL. Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2-water, ethylene glycol, and paraffin oil nanofluids and models comparisons. J Exp Nanosci. 2015. https://doi.org/10.1080/17458080.2013.832421.

    Article  Google Scholar 

  63. Lee D, Kim JW, Kim BG. A new parameter to control heat transport in nanofluids: Surface charge state of the particle in suspension. J Phys Chem B. 2006. https://doi.org/10.1021/jp057225m.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Saleh R, Putra N, Wibowo RE, Septiadi WN, Prakoso SP. Titanium dioxide nanofluids for heat transfer applications. Exp Thermal Fluid Sci. 2014. https://doi.org/10.1016/j.expthermflusci.2013.08.018.

    Article  Google Scholar 

  65. Sharma P, Baek IH, Cho T, Park S, Lee KB. Enhancement of thermal conductivity of ethylene glycol based silver nanofluids. Powder Technol. 2011. https://doi.org/10.1016/j.powtec.2010.11.016.

    Article  Google Scholar 

  66. Yang L, Xu J, Du K, Zhang X. Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technol. 2017. https://doi.org/10.1016/j.powtec.2017.04.061.

    Article  Google Scholar 

  67. Esfe MH, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015. https://doi.org/10.1007/s10973-014-4328-8.

    Article  Google Scholar 

  68. Akilu S, Baheta AT, Minea AA, Sharma KV. Rheology and thermal conductivity of non-porous silica (SiO2) in viscous glycerol and ethylene glycol based nanofluids. Int Commun Heat Mass Transfer. 2017. https://doi.org/10.1016/j.icheatmasstransfer.2017.08.001.

    Article  Google Scholar 

  69. Xian-Ju W, Xin-Fang L. Influence of pH on Nanofluids’ Viscosity and Thermal Conductivity. Chin Phys Lett. 2009. https://doi.org/10.1088/0256-307X/26/5/056601.

    Article  Google Scholar 

  70. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes. J Mech Sci Technol. 2016. https://doi.org/10.1007/s12206-016-0135-4.

    Article  Google Scholar 

  71. Baratpour M, Karimipour A, Afrand M, Wongwises S. Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol. Int Commun Heat Mass Transfer. 2016. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.008.

    Article  Google Scholar 

  72. Esfe MH, Hajmohammad MH, Razi P, Ahangar MRH, Arani AAA. The optimization of viscosity and thermal conductivity in hybrid nanofluids prepared with magnetic nanocomposite of nanodiamond cobalt-oxide (ND-Co3O4) using NSGA-II and RSM. Int Commun Heat Mass Transfer. 2016. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.015.

    Article  Google Scholar 

  73. Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009. https://doi.org/10.1016/j.ijthermalsci.2008.03.009.

    Article  Google Scholar 

  74. Esfe MH, Hajmohammad MH. Thermal conductivity and viscosity optimization of nanodiamond Co3O4/EG (40:60) aqueous nanofluid using NSGA-II coupled with RSM. J Mol Liq. 2017. https://doi.org/10.1016/j.molliq.2017.04.056.

    Article  Google Scholar 

  75. Einstein A. Investigations on the Theory of the Brownian Movement. Dover Publication; 1956.

  76. Brinkman HC. The viscosity of concentrated suspensions and solution. J Chem Phys. 1952. https://doi.org/10.1063/1.1700493.

    Article  Google Scholar 

  77. Chen H, Ding Y, Tan C. Rheological behaviour of nanofluids. New J Phys. 2007. https://doi.org/10.1088/1367-2630/9/10/367.

    Article  Google Scholar 

  78. Azmi WH, Sharma KV, Mamat R, Alias ABS, Misnon II. Correlations for thermal conductivity and viscosity of water based nanofluids. IOP Conf Ser Mater Sci Eng. 2012. https://doi.org/10.1088/1757-899X/36/1/012029.

    Article  Google Scholar 

  79. Karimipour A, Ghasemi S, Darvanjooghi MHK, Abdollahi A. A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method. Int Commun Heat Mass Transfer. 2018. https://doi.org/10.1016/j.icheatmasstransfer.2018.02.002.

    Article  Google Scholar 

  80. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977. https://doi.org/10.1017/S0022112077001062.

    Article  Google Scholar 

  81. Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, Mintsa HA. Viscosity data for Al2O3-water nanofluid hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci. 2008. https://doi.org/10.1016/j.ijthermalsci.2007.01.033.

    Article  Google Scholar 

  82. Lundgren TS. Slow flow through stationary random beds and suspensions of spheres. J Fluid Mech. 1972. https://doi.org/10.1017/S002211207200120X.

    Article  Google Scholar 

  83. Esfe MH, Esfandeh S, Saedodin S, Rostamian H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.06.077.

    Article  Google Scholar 

  84. Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf. 2009. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Trakya University Coordinatorship of Scientific Research Projects, TÜBAP, Project no: 2019/16. All authors are indebted to Trakya University Coordinatorship of Scientific Research Projects for the financial assistance, Istanbul Arel University’s Polymer Technologies and Composite Application Center (POTKAM) for FESEM image, and Yildiz Technical University’s Science and Technology Application and Research Center for zeta potential measurement. The fourth author acknowledges the support provided by National Science and Technology Development Agency (NSTDA) under the "Research Chair Grant", and the Thailand Science Research and Innovation (TSRI) under Fundamental Fund 2022 (Project: Advanced Materials and Manufacturing for Applications in New S-curve Industries).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökberk Yalçın.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalçın, G., Öztuna, S., Dalkılıç, A.S. et al. Measurement of thermal conductivity and viscosity of ZnO–SiO2 hybrid nanofluids. J Therm Anal Calorim 147, 8243–8259 (2022). https://doi.org/10.1007/s10973-021-11076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11076-8

Keywords

Navigation