Skip to main content
Log in

Thermokinetic prediction and safety evaluation for toluene sulfonation process and product using calorimetric technology

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Toluene sulfonation is a typical synthetic process in the modern chemical industry. However, there are unexpected thermal hazards in this process, resulting in thermal runaway accidents. Aiming at the toluene sulfonation process’s thermal safety and its product p-toluenesulfonic acid’s thermal stability, this study adopted the reaction calorimeter and differential scanning calorimetry to test its thermal behaviour. A variety of nonisothermal methods were used to calculate the kinetic parameters. Through the autocatalytic model and n-order model simulations, the reaction mechanism was speculated. The comparison showed that the apparent activation energy values calculated by iso-conversional methods were more reliable. The findings of the study can provide helpful data and suggestions for the toluene sulfonation reaction and product safety to reduce the potential risks in the industrial process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor (s−1)

C s :

Constant (dimensionless)

E a :

Apparent activation energy (kJ mol−1)

E a :

Average apparent activation energy (kJ mol−1)

f(α):

Dynamic mechanism function of the differential form (dimensionless)

G(α):

Integral form of the kinetic mechanism function (dimensionless)

k :

Reaction rate constant (W m2 K)

MTSR:

Maximum temperature of the synthesis reaction (°C)

R :

Universal gas constant (8.314 J mol−1 K−1)

R 2 :

Linear fitting’s coefficient of determination (dimensionless)

t :

Time (sec)

T :

Absolute temperature (°C)

T iso :

Reaction temperature in isothermal condition (°C)

T o :

Onset temperature (°C)

T p :

Peak temperature (°C)

x ac :

Heat accumulation rate (dimensionless)

H :

Heat of reaction (J g−1)

ΔH R :

Heat of reaction measured by RC1 (kJ)

ΔT ad :

Adiabatic temperature rise (°C)

α :

Conversion rate (dimensionless)

β :

Heating rate (°C min−1)

References

  1. Tsai SF, Huang AC, Shu CM. Integrated self-assessment module for fire rescue safety in a chemical plant – A case study. J Loss Prev Process Ind. 2018;51:137–49.

    Article  CAS  Google Scholar 

  2. Zhang J, Wang SY, Ma YY, Chen LP, Chen WH. Investigation of the decomposition kinetics and thermal hazards of 2,4-Dinitrotoluene on simulation approach. Thermochim Acta. 2020;684: 178350.

    Article  CAS  Google Scholar 

  3. Huang AC, Liao FC, Huang CF, Tang Y, Zhang Y, Shu CM, et al. Calorimetric approach to establishing thermokinetics for cosmeceutical benzoyl peroxides containing metal ions. J Therm Anal Calorim. 2021;144:373–82.

    Article  CAS  Google Scholar 

  4. Tsai YT, Huang GT, Zhao JQ, Shu CM. Dust cloud explosion characteristics and mechanisms in MgH2-based hydrogen storage materials. AlChE J. 2021. https://doi.org/10.1002/aic.17302.

    Article  Google Scholar 

  5. Albu P, Doca SC, Anghel A, Vlase G, Vlase T. Thermal behavior of sodium alendronate. J Therm Anal Calorim. 2017;127(1):571–6.

    Article  CAS  Google Scholar 

  6. Cao CR, Liu SH, Huang AC, Lee MH, Ho SP, Yu WL, et al. Application of thermal ignition theory of di(2,4-dichlorobenzoyl) peroxide by kinetic-based curve fitting. J Therm Anal Calorim. 2018;133(1):753–61.

    Article  CAS  Google Scholar 

  7. Morley JO, Roberts DW. Molecular modeling studies on aromatic sulfonation. 1. intermediates formed in the sulfonation of toluene. J Org Chem. 1997;62(21):7358–63.

  8. Englund SW, Aries RS, Othmer D. Synthesis of cresol: Sulfonation of toluene. Ind Eng Chem. 1953;45(1):189–93.

    Article  CAS  Google Scholar 

  9. Wu JC, Wang BH, Zhang DL, Song GF, Yuan JT, Liu BF. Production of p-toluenesulfonic acid by sulfonating toluene with gaseous sulfur trioxide. J Chem Technol Biotechnol. 2001;76(6):619–23.

    Article  CAS  Google Scholar 

  10. Vinnik MI, Abramovich LD. Kinetics of the hydrolysis of mesitylenesulfonic acid and the sulfonation of mesitylene in aqueous solutions of sulfuric acid. Russ Chem Bull. 1972;21(4):789–95.

    Article  Google Scholar 

  11. Jiang J, Wu H, Ni L, Zou M. CFD simulation to study batch reactor thermal runaway behavior based on esterification reaction. Process Saf Environ Prot. 2018;120:87–96.

    Article  CAS  Google Scholar 

  12. Sun Y, Ni L, Papadaki M, Zhu W, Jiang J, Mashuga C, et al. Process hazard evaluation for catalytic oxidation of 2-octanol with hydrogen peroxide using calorimetry techniques. Chem Eng J. 2019;378: 122018.

    Article  CAS  Google Scholar 

  13. Wang Z, Cao DL, Xu ZS, Wang JL, Chen LZ. Thermal safety study on the synthesis of HMX by nitrourea method. Process Saf Environ Prot. 2020;137:282–8.

    Article  CAS  Google Scholar 

  14. Ning BK, Hu RZ, Zhang H, Xia ZM, Jiang JY. Estimation of the critical rate of temperature rise for thermal explosion of autocatalytic decomposing reaction of nitrocellulose using nonisothermal DSC. Thermochim Acta. 2004;416(1):47–50.

    Article  CAS  Google Scholar 

  15. Shiue GY, Huang AC, Chen JR. Thermal decomposition of triacetone triperoxide by differential scanning calorimetry. J Therm Anal Calorim. 2018;133(1):745–51.

    Article  CAS  Google Scholar 

  16. Cheuk D, Svard M, Rasmuson AC. Thermodynamics of the enantiotropic pharmaceutical compound benzocaine and solubility in pure organic solvents. J Pharm Sci-Us. 2020;109(11):3370–7.

    Article  CAS  Google Scholar 

  17. Chinnam AK, Yu Q, Imler GH, Parrish DA, Shreeve JM. Azo- and methylene-bridged mixed azoles for stable and insensitive energetic applications. Dalton T. 2020;49(33):11498–503.

    Article  CAS  Google Scholar 

  18. Genova J, Chamati H, Petrov M. Study of SOPC with embedded pristine and amide-functionalized single wall carbon nanotubes by DSC and FTIR spectroscopy. Colloids Surf, A. 2020;603: 125261.

    Article  CAS  Google Scholar 

  19. Vyazovkin S. Kissinger method in kinetics of materials: Things to beware and be aware of. Molecules. 2020;25(12):2813.

    Article  CAS  Google Scholar 

  20. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68.

    Article  Google Scholar 

  21. Huang AC, Li ZP, Liu YC, Tang Y, Huang CF, Shu CM, et al. Essential hazard and process safety assessment of para-toluene sulfonic acid through calorimetry and advanced thermokinetics. J Loss Prev Process Ind. 2021;72: 104558.

    Article  CAS  Google Scholar 

  22. Lin CP, Chang YM, Gupta JP, Shu CM. Comparisons of TGA and DSC approaches to evaluate nitrocellulose thermal degradation energy and stabilizer efficiencies. Process Saf Environ Prot. 2010;88(6):413–9.

    Article  CAS  Google Scholar 

  23. Deng J, Zhao JY, Huang AC, Zhang YN, Wang CP, Shu CM. Thermal behavior and microcharacterization analysis of second-oxidized coal. J Therm Anal Calorim. 2016;127(1):439–48.

    Article  Google Scholar 

  24. Huang AC, Huang CF, Tang Y, Xing ZX, Jiang JC. Evaluation of multiple reactions in dilute benzoyl peroxide concentrations with additives using calorimetric technology. J Loss Prev Process Ind. 2021;69: 104373.

    Article  CAS  Google Scholar 

  25. Pouretedal HR, Mousavi SL. Study of the ratio of fuel to oxidant on the kinetic of ignition reaction of Mg/Ba(NO3)(2) and Mg/Sr(NO3)(2) pyrotechnics by nonisothermal TG/DSC technique. J Therm Anal Calorim. 2018;132(2):1307–15.

    Article  CAS  Google Scholar 

  26. Huang AC, Huang CF, Xing ZX, Jiang JC, Shu CM. Thermal hazard assessment of the thermal stability of acne cosmeceutical therapy using advanced calorimetry technology. Process Saf Environ Prot. 2019;131:197–204.

    Article  CAS  Google Scholar 

  27. Bano S, Ramzan N, Iqbal T, Mahmood H, Saeed F. Study of thermal degradation behavior and kinetics of ABS/PC blend. Pol J Chem Technol. 2020;22(3):64–9.

    Article  CAS  Google Scholar 

  28. Gao X, Jiang L, Xu Q, Wu WQ, Mensah RA. Thermal kinetics and reactive mechanism of cellulose nitrate decomposition by traditional multi kinetics and modeling calculation under isothermal and nonisothermal conditions. Ind Crop Prod. 2020;145: 112085.

    Article  CAS  Google Scholar 

  29. Rasam S, Haghighi AM, Azizi K, Soria-Verdugo A, Moraveji MK. Thermal behavior, thermodynamics and kinetics of co-pyrolysis of binary and ternary mixtures of biomass through thermogravimetric analysis. Fuel. 2020;280: 118665.

    Article  CAS  Google Scholar 

  30. Fernandez A, Ortiz LR, Asensio D, Rodriguez R, Mazza G. Kinetic analysis and thermodynamics properties of air/steam gasification of agricultural waste. J Environ Chem Eng. 2020;8(4): 103829.

    Article  CAS  Google Scholar 

  31. Wang ZT, Gong ZQ, Wang W, Zhang Z. Study on combustion characteristics and the migration of heavy metals during the co-combustion of oil sludge char and microalgae residue. Renewable Energy. 2020;151:648–58.

    Article  CAS  Google Scholar 

  32. Vara JA, Dave PN, Chaturvedi S. Investigating Catalytic Properties of Nanoferrites for Both AP and Nano-AP Based Composite Solid Propellant. Combust Sci Technol. 2020;1:1–15.

    Google Scholar 

  33. Cao CR, Liu SH, Das M, Shu CM. Evaluation for the thermokinetics of the autocatalytic reaction of cumene hydroperoxide mixed with phenol through isothermal approaches and simulations. Process Saf Environ Prot. 2018;117:426–38.

    Article  CAS  Google Scholar 

  34. Wang SY, Kossoy AA, Yao YD, Chen LP, Chen WH. Kinetics-based simulation approach to evaluate thermal hazards of benzaldehyde oxime by DSC tests. Thermochim Acta. 2017;655:319–25.

    Article  CAS  Google Scholar 

  35. Yang Y-P, Huang A-C, Tang Y, Liu Y-C, Zhi-Hao W, Zhou H-L, Li Z-P, Shu C-M, Jiang J-C, Xing Z-X. Thermal stability analysis of lithium-ion battery electrolytes based on lithium Bis(Trifluoromethanesulfonyl)imide-lithium difluoro(oxalato)borate dual-salt. Polymers. 2021;13(5):707. https://doi.org/10.3390/polym13050707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen WC, Shu CM. Prediction of thermal hazard for TBPTMH mixed with BPO through DSC and isoconversional kinetics analysis. J Therm Anal Calorim. 2016:1937–45.

Download references

Acknowledgements

The authors are grateful to the National Key Research Development Program of China (No. 2021YFC3001203), National Nature Science Foundation of China (No. 21927815), and General Natural Science Research Project of Jiangsu Universities in 2020 (No. 20KJB620002) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to An-Chi Huang, Yan Tang or Chung-Fu Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZP., Huang, AC., Tang, Y. et al. Thermokinetic prediction and safety evaluation for toluene sulfonation process and product using calorimetric technology. J Therm Anal Calorim 147, 12177–12186 (2022). https://doi.org/10.1007/s10973-022-11384-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11384-7

Keywords

Navigation