Skip to main content
Log in

A practical toolbox for design and analysis of landscape genetics studies

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Landscape genetics integrates theory and analytical methods of population genetics and landscape ecology. Research in this area has increased in recent decades, creating a plethora of options for study design and analysis. Here we present a practical toolbox for the design and analysis of landscape genetics studies following a seven-step framework: (1) define the study objectives, (2) consider the spatial and temporal scale of the study, (3) design a sampling regime, (4) select a genetic marker, (5) generate genetic input data, (6) generate spatial input data, and (7) choose an analytical method that integrates genetic and spatial data. Study design considerations discussed include choices of spatial and temporal scale, sample size and spatial distribution, and genetic marker selection. We present analytical methods suitable for achieving different study objectives. As emerging technologies generate genetic and spatial data sets of increasing size, complexity, and resolution, landscape geneticists are challenged to execute hypothesis-driven research that combines empirical data and simulation modeling. The landscape genetics framework presented here can accommodate new design considerations and analyses, and facilitate integration of genetic and spatial data by guiding new landscape geneticists through study design, implementation, and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amos JN, Bennett AF, Mac Nally R, Newell G, Pavlova, A, Radford JQ, Thomson JR, White M, Sunnucks P (2012) Predicting landscape-genetic consequences of habitat loss, fragmentation and mobility for multiple species of woodland birds. PLoS ONE 7:e30888

  • Anderson CD, Epperson BK, Fortin MJ, Holderegger R, James P, Rosenberg MS, Scribner K, Spear S (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575

  • Balkenhol N, Gugerli F, Cushman SA, Waits LP, Coulon A, Arntzen JW, Holderegger R, Wagner HH, Participants of the Landscape Genetics Research Agenda Workshop 2007 (2009a) Identifying future research needs in landscape genetics: where to from here? Landscape Ecol 24:455–463

  • Balkenhol N, Waits LP, Dezzani RJ (2009b) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32:818–830

    Article  Google Scholar 

  • Beebee T, Rowe G (2008) An introduction to molecular ecology, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci 98:4563–4568

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blair C, Weigel DE, Balazik M, Keeley ATH, Walker FM, Landguth E, Cushman S, Murphy M, Waits L, Balkenhol N (2012) A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol Ecol Resour 12:822–833

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human trees with polymorphic microsatellites. Nature 368:455–457

  • Bradburd GS, Ralph PL, Coop GM (2013) Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution 67:3258–3273

    Article  PubMed  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecoloical Monogr 27:325–349

    Article  Google Scholar 

  • Bruggeman DJ, Wiegand T, FernáNdez N (2010) The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis). Mol Ecol 19:3679–3691

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23:843–856

    Article  PubMed  Google Scholar 

  • Cavalli-Sforza LL, Edwards AW (1967) Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19:233

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cercueil A, François O, Manel S (2007) The genetical bandwidth mapping: a spatial and graphical representation of population genetic structure based on the Wombling method. Theor Popul Biol 71:332–341

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Durand E, Forbes F, FrançOis O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756

    Article  Google Scholar 

  • Cushman SA (2014) Grand challenges in evolutionary and population genetics: the importance of integrating epigenetics, genomics, modeling, and experimentation. Front Genet 5:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Cushman SA, Landguth EL (2010a) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602

    Article  PubMed  Google Scholar 

  • Cushman SA, Landguth EL (2010b) Scale dependent inference in landscape genetics. Landscape Ecol 25:967–979

    Article  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Cushman SA, Shirk A, Landguth EL (2011) Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landscape Ecol 27:369–380

    Article  Google Scholar 

  • Cushman S, Wasserman T, Landguth E, Shirk A (2013a) Re-evaluating causal modeling with Mantel tests in landscape genetics. Diversity 5:51–72

    Article  Google Scholar 

  • Cushman SA, Max TL, Whitham TG, Allan GJ (2013b) River network connectivity and climate gradients drive genetic differentiation in a riparian foundation tree. Ecol Appl 24:1000–1014

    Article  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, de C Telles MP, Rangel TF, Bini LM (2013) Mantel test in population genetics. Genet Mol Biol 36:475–485

  • Dobzhansky T (1947) A directional change in the genetic constitution of a natural population of Drosophila pseudoobscura. Heredity 1:53–64

    Article  Google Scholar 

  • Dyer RJ, Nason JD (2004) Population Graphs: the graph theoretic shape of genetic structure. Mol Ecol 13:1713–1727

    Article  PubMed  Google Scholar 

  • Eckert AJ, Bower AD, GonzáLez-MartíNez SC, Wegrzyn JL, Coop G, Neale DB (2010) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19:3789–3805

  • Elkie PC, Rempel RS, Carr A, et al. (1999) Patch analyst user’s manual: a tool for quantifying landscape structure. Ontario Ministry of Natural Resources, Boreal Science, Northwest Science & Technology, Thunder Bay

  • Elliot NB, Cushman SA, Macdonald DW, Loveridge AJ (2014) The devil is in the dispersers: predictions of landscape connectivity change with demography. J Appl Ecol. doi:10.1111/1365-2664.12282

  • Emaresi G, Pellet J, Dubey S et al (2009) Landscape genetics of the Alpine newt (Mesotriton alpestris) inferred from a strip-based approach. Conserv Genet 12:41–50

    Article  Google Scholar 

  • Epperson BK, Chung MG (2001) Spatial genetic structure of allozyme polymorphisms within populations of Pinus strobus (Pinaceae). Am J Bot 88:1006–1010

    Article  PubMed  CAS  Google Scholar 

  • Epperson BK, Mcrae BH, Scribner K, Cushman SA, Rosenberg MS, Fortin M-J, James PMA, Murphy M, Manel S, Legendre P, Dale MRT (2010) Utility of computer simulations in landscape genetics. Mol Ecol 19:3549–3564

  • Epps CW, Wehausen JD, Bleich VC, Torres SG, Brashares JS (2007) Optimizing dispersal and corridor models using landscape genetics. J Appl Ecol 44:714–724

  • Freedman AH, Thomassen HA, Buermann W, Smith TB (2010) Genomic signals of diversification along ecological gradients in a tropical lizard. Mol Ecol 19:3773–3788

    Article  PubMed  Google Scholar 

  • Galpern P, Manseau M (2013) Finding the functional grain: comparing methods for scaling resistance surfaces. Landscape Ecol 28:1269–1281

    Article  Google Scholar 

  • Girard P, Takekawa JY, Beissinger SR (2010) Uncloaking a cryptic, threatened rail with molecular markers: origins, connectivity and demography of a recently-discovered population. Conserv Genet 11:2409–2418

    Article  Google Scholar 

  • Goldberg CS, Waits LP (2010) Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape. Mol Ecol 19:3650–3663

    Article  PubMed  Google Scholar 

  • Graves TA, Beier P, Royle JA (2013) Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Mol Ecol 22:3888–3903

    Article  PubMed  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  • Hale ML, Burg TM, Steeves TE (2012) Sampling for microsatellite-based population genetic studies: 25–30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7:e45170

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • He Q, Edwards DL, Knowles LL (2013) Integrative testing of how environments from the past to the present shape genetic structure across landscapes. Evolution 67:3386–3402

    Article  PubMed  Google Scholar 

  • Hedrick PW (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53:313

    Article  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  PubMed  CAS  Google Scholar 

  • Heidinger IMM, Hein S, Feldhaar H, Poethke H-J (2013) The genetic structure of populations of Metrioptera bicolor in a spatially structured landscape: effects of dispersal barriers and geographic distance. Conserv Genet 14:299–311

    Article  Google Scholar 

  • Holderegger R, Wagner HH (2006) A brief guide to Landscape Genetics. Landscape Ecol 21:793–796

    Article  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Holderegger R, Kamm U, Gugerli F (2006) Adaptive versus neutral genetic diversity: implications for landscape genetics. Landscape Ecol 21:797–807

    Article  Google Scholar 

  • Holzhauer SIJ, Wolff K, Wolters V (2009) Changes in land use and habitat availability affect the population genetic structure of Metrioptera roeselii (Orthoptera: Tettigoniidae). J Insect Conserv 13:543–552

    Article  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise Sci Nat 44:223–270

    Google Scholar 

  • Jacquez GM (1995) The map comparison problem: tests for the overlap of geographic boundaries. Stat Med 14:2343–2361

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones TH, Vaillancourt RE, Potts BM (2007) Detection and visualization of spatial genetic structure in continuous Eucalyptus globulus forest. Mol Ecol 16:697–707

    Article  PubMed  CAS  Google Scholar 

  • Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kalinowski ST (2002) Evolutionary and statistical properties of three genetic distances. Mol Ecol 11:1263–1273

    Article  PubMed  Google Scholar 

  • Kimura M (1969) The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61:893

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci 75:2868–2872

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koen EL, Bowman J, Garroway CJ, Wilson PJ (2013) The sensitivity of genetic connectivity measures to unsampled and under-sampled sites. PLoS ONE 8:e56204

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Landguth EL, Cushman SA (2010) CDPOP: a spatially explicit cost distance population genetics program. Mol Ecol Resour 10:156–161

    Article  PubMed  CAS  Google Scholar 

  • Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191

  • Landguth EL, Cushman SA, Johnson NA (2012a) Simulating natural selection in landscape genetics. Mol Ecol Resour 12:363–368

    Article  PubMed  CAS  Google Scholar 

  • Landguth EL, Fedy BC, Oyler-McCance SJ, Garey AL, Emel SL, Mumma M, Wagner HH, Fortin M-J, Cushman SA. (2012b) Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol Ecol Resour 12:276–284

  • Latta RG (2006) Integrating patterns across multiple genetic markers to infer spatial processes. Landscape Ecol 21:809–820

    Article  Google Scholar 

  • Legendre P, Fortin M-J (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10:831–844

    Article  PubMed  Google Scholar 

  • Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–3835

  • Manel S, Albert C, Yoccoz N (2012) Sampling in landscape genomics. In: Pompanon F, Bonin A (eds) Data Prod. Humana Press, Anal Popul Genomics, pp 3–12

    Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • McGarigal K, Cushman S, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. University of Massachusetts, Amherst

    Google Scholar 

  • McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561

    Article  PubMed  Google Scholar 

  • Meeuwig MH, Guy CS, Kalinowski ST, Fredenberg WA (2010) Landscape influences on genetic differentiation among bull trout populations in a stream-lake network. Mol Ecol 19:3620–3633

    Article  PubMed  Google Scholar 

  • Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261

    Article  Google Scholar 

  • Murphy MA, Evans JS, Cushman SA, Storfer A (2008) Representing genetic variation as continuous surfaces: an approach for identifying spatial dependency in landscape genetic studies. Ecography 31:685–697

    Article  Google Scholar 

  • Murphy MA, Dezzani R, Pilliod DS, Storfer A (2010a) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3634–3649

    Article  PubMed  Google Scholar 

  • Murphy MA, Evans JS, Storfer A (2010b) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261

    Article  PubMed  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  PubMed  CAS  Google Scholar 

  • O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690

    Article  Google Scholar 

  • Oyler-McCance SJ, Fedy BC, Landguth EL (2013) Sample design effects in landscape genetics. Conserv Genet 14:275–285

    Article  Google Scholar 

  • Pavlacky DC Jr, Goldizen AW, Prentis PJ, Nicholls JA, Lowe AJ (2009) A landscape genetics approach for quantifying the relative influence of historic and contemporary habitat heterogeneity on the genetic connectivity of a rainforest bird. Mol Ecol 18:2945–2960

  • Pease KM, Freedman AH, Pollinger JP, Mccormack JE, Buermann W, Rodzen J, Banks J, Meredith E, Bleich VC, Schaefer RJ, Jones K, Wayne RK (2009) Landscape genetics of California mule deer (Odocoileus hemionus): the roles of ecological and historical factors in generating differentiation. Mol Ecol 18:1848–1862

  • Rico Y, Holderegger R, Boehmer HJ, Wagner HH (2014) Directed dispersal by rotational shepherding supports landscape genetic connectivity in a calcareous grassland plant. Mol Ecol 23:832–842

    Article  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article  Google Scholar 

  • Saenz-Romero C, Guries RP, Monk AI (2001) Landscape genetic structure of Pinus banksiana: allozyme variation. Can J Bot 79:871–878

    CAS  Google Scholar 

  • Schoville SD, Bonin A, François O, Lobreaux S, Melodelima C, Manel S (2012) Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Evol Syst 43:23–43

  • Schwartz MK, McKelvey KS (2008) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452

    Article  Google Scholar 

  • Schwartz MK, McKelvey KS, Cushman SA, Luikart G (2010) Landscape genomics: a brief perspective. In: Cushman SA, Huettmann F (eds) Spat. complex comprehensive conservation. Springer, Tokyo, pp 165–174

    Google Scholar 

  • Segelbacher G, Cushman SA, Epperson BK et al (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385

    Article  Google Scholar 

  • Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619

  • Shirk AJ, Cushman SA, Landguth EL (2012) Simulating pattern–process relationships to validate landscape genetic models. Int J Ecol 2012:1–8

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438

    Google Scholar 

  • Sork VL, Davis FW, Westfall R et al (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Mol Ecol 19:3806–3823

    Article  PubMed  Google Scholar 

  • Spear SF, Storfer A (2010) Anthropogenic and natural disturbance lead to differing patterns of gene flow in the Rocky Mountain tailed frog, Ascaphus montanus. Biol Conserv 143:778–786

    Article  Google Scholar 

  • Spear SF, Balkenhol N, Fortin M-J, Mcrae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2006) Putting the “landscape” in landscape genetics. Heredity 98:128–142

  • Storfer A, Murphy MA, Spear SF et al (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Van Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol 21:4010–4023

    Article  Google Scholar 

  • Wagner HH, Fortin M-J (2013) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet 14:253–261

    Article  Google Scholar 

  • Wang IJ (2011) Choosing appropriate genetic markers and analytical methods for testing landscape genetic hypotheses. Mol Ecol 20:2480–2482

    Article  Google Scholar 

  • Wang IJ (2013) Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67:3403–3411

    Article  PubMed  Google Scholar 

  • Wang IJ, Glor RE, Losos JB (2013) Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett 16:175–182

    Article  PubMed  Google Scholar 

  • Wasserman TN, Cushman SA, Shirk AS, Landguth EL, Littell JS (2012) Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landscape Ecol 27:211–225

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177

    PubMed  PubMed Central  Google Scholar 

  • Womble WH (1951) Differential systematics. Science 114:315–322

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu B, Liu N, Zhao H (2006) PSMIX: an R package for population structure inference via maximum likelihood method. BMC Bioinf 7:317

    Article  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797

    Article  Google Scholar 

  • Zellmer AJ, Knowles LL (2009) Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence. Mol Ecol 18:3593–3602

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Beissinger Lab for discussions and advice during development of this manuscript. Constructive comments were also provided by N. VanSchmidt, K. Iknayan, J. Belton, two anonymous reviewers, and the associate editor. Financial support was provided by the National Science Foundation DEB-1051342 and CNH 1115069 to SRB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie A. Hall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, L.A., Beissinger, S.R. A practical toolbox for design and analysis of landscape genetics studies. Landscape Ecol 29, 1487–1504 (2014). https://doi.org/10.1007/s10980-014-0082-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-014-0082-3

Keywords

Navigation