Skip to main content
Log in

Locating wildlife crossings for multispecies connectivity across linear infrastructures

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Linear transportation infrastructures traverse and separate wildlife populations, potentially leading to their short- and long-term decline at local and regional scales. To attenuate such effects, we need wildlife crossings suitable for a wide range of species.

Objectives

We propose a method for identifying the best locations for wildlife crossings along linear infrastructures so as to improve the connectivity of species with varying degrees of mobility and living in different habitats. We evaluate highway impacts on mammal species.

Methods

The study area is the Grésivaudan Valley, France. We used allometric relationships to create eight virtual species and model their connectivity networks, developing a nested method defining populations by daily travel distances and connecting them by dispersal. We tested the gain in connectivity for each species produced by 100 and 600 crossing locations respectively in crossable, i.e. with crossing infrastructures, and uncrossable highway scenarios. We identified the crossings that optimize the connectivity of the maximum number of species combining the results in multivariate analyses.

Results

Highly mobile species needing a large habitat area were the most sensitive to highways. The importance of locomotive performance in structuring the graphs decreased with highway impermeability. Depending on the species, the best locations improved connectivity by 0–10 and 2–75 % respectively in the crossable and uncrossable scenarios. Compromise locations were found for seven of the eight species in both scenarios.

Conclusions

This method could guide planners in identifying crossing locations to increase the connectivity of different species at regional scales over the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexander SM, Waters NM (2000) The effects of highway transportation corridors on wildlife: a case study of Ban ϵ National Park. Transp Res Part C 8:307–320

    Article  Google Scholar 

  • Baguette M, Stevens V (2013) Predicting minimum area requirements of butterflies using life-history traits. J Insect Conserv 17:645–652. doi:10.1007/s10841-013-9548-x

    Article  Google Scholar 

  • Barthelmess EL (2014) Spatial distribution of road-kills and factors influencing road mortality for mammals in Northern New York State. Biodivers Conserv 23:2491–2514. doi:10.1007/s10531-014-0734-2

    Article  Google Scholar 

  • Barthelmess EL, Brooks MS (2010) The influence of body-size and diet on road-kill trends in mammals. Biodivers Conserv 19:1611–1629. doi:10.1007/s10531-010-9791-3

    Article  Google Scholar 

  • Bissonette JA, Adair W (2008) Restoring habitat permeability to roaded landscapes with isometrically-scaled wildlife crossings. Biol Conserv 141:482–488. doi:10.1016/j.biocon.2007.10.019

    Article  Google Scholar 

  • Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–2055

    Article  Google Scholar 

  • Brehme CS, Tracey JA, McClenaghan LR, Fisher RN (2013) Permeability of roads to movement of scrubland lizards and small mammals. Conserv Biol 27:710–720. doi:10.1111/cobi.12081

    Article  PubMed  Google Scholar 

  • Brown B, Aaron M (2001) The politics of nature. In: Smith J (ed) The rise of modern genomics, 3rd edn. Wiley, New York, pp 2–11

  • Buchmann CM, Schurr FM, Nathan R, Jeltsch F (2011) An allometric model of home range formation explains the structuring of animal communities exploiting heterogeneous resources. Oikos 120:106–118. doi:10.1111/j.1600-0706.2010.18556.x

    Article  Google Scholar 

  • Buchmann CM, Schurr FM, Nathan R, Jeltsch F (2012) Movement upscaled—the importance of individual foraging movement for community response to habitat loss. Ecography (Cop) 35:436–445. doi:10.1111/j.1600-0587.2011.06924.x

    Article  Google Scholar 

  • Carbone C, Cowlishaw G, Isaac NJB, Rowcliffe JM (2005) How far do animals go? Determinants of day range in mammals. Am Nat 165:290–297. doi:10.1086/426790

    Article  PubMed  Google Scholar 

  • Clauzel C, Girardet X, Foltête J-C (2013) Impact assessment of a high-speed railway line on species distribution: application to the European tree frog (Hyla arborea) in Franche-Comté. J Environ Manag 127:125–134. doi:10.1016/j.jenvman.2013.04.018

    Article  Google Scholar 

  • Clauzel C, Xiqing D, Gongsheng W, Giraudoux P, Li L (2015) Assessing the impact of road developments on connectivity across multiple scales: application to Yunnan snub-nosed monkey conservation. Biol Conserv 192:207–217. doi:10.1016/j.biocon.2015.09.029

    Article  Google Scholar 

  • Clevenger AP, Waltho N (2000) Factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta. Canada. 14:47–56

    Google Scholar 

  • Cohen Y, Robbins CT, Davitt BB (1978) Oxygen utilization by elk calves during horizontal and vertical locomotion compared to other species. Comp Biochem Physiol Part A Physiol 61:43–48. doi:10.1016/0300-9629(78)90274-8

    Article  Google Scholar 

  • Coulon A, Guillot G, Cosson J-F, Angibault JMA, Aulagnier S, Cargnelutti B, Hewison AJM (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679. doi:10.1111/j.1365-294X.2006.02861.x

    Article  CAS  PubMed  Google Scholar 

  • Cushman SA, Lewis JS, Landguth EL (2014) Why did the bear cross the road? Comparing the performance of multiple resistance surfaces and connectivity modeling methods. Diversity 6:844–854

    Article  Google Scholar 

  • Epps C, Palsbøll PJ, Wehausen JD, Roderick GK, Ramey RR, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029-1038

    Article  Google Scholar 

  • Fernandes JP (2000) Landscape ecology and conservation management—evaluation of alternatives in a highway EIA process. Environ Impact Assess Rev 20:665–680

    Article  Google Scholar 

  • Foltête J-C, Girardet X, Clauzel C (2014) A methodological framework for the use of landscape graphs in land-use planning. Landsc Urban Plan 124:140–150. doi:10.1016/j.landurbplan.2013.12.012

    Article  Google Scholar 

  • Ford AT, Fahrig L (2007) Diet and body size of North American mammal road mortalities. Transp Res Part D 12:498–505. doi:10.1016/j.trd.2007.07.002

    Article  Google Scholar 

  • Fu W, Liu S, Degloria SD, Dong S, Beazley R (2010) Characterizing the “fragmentation-barrier” effect of road networks on landscape connectivity: a case study in Xishuangbanna, Southwest China. Landsc Urban Plan 95:122–129. doi:10.1016/j.landurbplan.2009.12.009

    Article  Google Scholar 

  • García-Feced C, Saura S, Elena-Rosselló R (2011) Improving landscape connectivity in forest districts: a two-stage process for prioritizing agricultural patches for reforestation. For Ecol Manag 261:154–161. doi:10.1016/j.foreco.2010.09.047

    Article  Google Scholar 

  • Girardet X, Conruyt-Rogeon G, Foltête J-C (2015) Does regional landscape connectivity influence the location of roe deer roadkill hotspots? Eur J Wildl Res 61:731–742. doi:10.1007/s10344-015-0950-4

    Article  Google Scholar 

  • Girardet X, Foltête J-C, Clauzel C (2013) Designing a graph-based approach to landscape ecological assessment of linear infrastructures. Environ Impact Assess Rev 42:10–17. doi:10.1016/j.eiar.2013.03.004

    Article  Google Scholar 

  • González-Gallina A, Benítez-Badillo G, Rojas-Soto OR, Hidalgo-Mihart MG (2013) The small, the forgotten and the dead: highway impact on vertebrates and its implications for mitigation strategies. Biodivers Conserv 22:325–342. doi:10.1007/s10531-012-0396-x

    Article  Google Scholar 

  • Grilo C, Ascensão F, Santos-Reis M, Bissonette JA (2010) Do well-connected landscapes promote road-related mortality? Eur J Wildl Res 57:707–716. doi:10.1007/s10344-010-0478-6

    Article  Google Scholar 

  • Grilo C, Bissonette JA, Santos-Reis M (2009) Spatial–temporal patterns in Mediterranean carnivore road casualties: consequences for mitigation. Biol Conserv 142:301–313. doi:10.1016/j.biocon.2008.10.026

    Article  Google Scholar 

  • Gurrutxaga M, Saura S (2013) Prioritizing highway defragmentation locations for restoring landscape connectivity. Environ Conserv 41:157–164. doi:10.1017/S0376892913000325

    Article  Google Scholar 

  • Hartmann SA, Steyer K, Kraus RHS, Segelbacher G, Nowak C (2013) Potential barriers to gene flow in the endangered European wildcat (Felis silvestris). Conserv Genet 14:413–426. doi:10.1007/s10592-013-0468-9

    Article  Google Scholar 

  • Hendriks AJ (2007) The power of size: a meta-analysis reveals consistency of allometric regressions. Ecol Model 205:196–208. doi:10.1016/j.ecolmodel.2007.02.029

    Article  Google Scholar 

  • Hendriks AJ, Willers BJC, Lenders HJR, Leuven RSEW (2009) Towards a coherent allometric framework for individual home ranges, key population patches and geographic ranges. Ecography (Cop) 32:929–942. doi:10.1111/j.1600-0587.2009.05718.x

    Article  Google Scholar 

  • Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Model 145:111–121

    Article  Google Scholar 

  • Holderegger R, Di Giulio M (2010) The genetic effects of roads: a review of empirical evidence. Basic Appl Ecol 11:522–531. doi:10.1016/j.baae.2010.06.006

    Article  Google Scholar 

  • Jetz W, Carbone C, Fulford J, Brown JH (2004) The scaling of animal space use. Science 306:266–268. doi:10.1126/science.1102138

    Article  CAS  PubMed  Google Scholar 

  • Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, Connolly C (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648

    Article  Google Scholar 

  • Kie JG, Ager AA, Bowyer RT (2005) Landscape-level movements of North American elk (Cervus elaphus): effects of habitat patch structure and topography. Landscape Ecol 20:289–300. doi:10.1007/s10980-005-3165-3

    Article  Google Scholar 

  • Klar N, Herrmann M, Kramer-Schadt S (2009) Effects and mitigation of road impacts on individual movement behavior of wildcats. J Wildl Manag 73:631–638. doi:10.2193/2007-574

    Article  Google Scholar 

  • Kusak J, Huber D, Gomerčić T, Schwaderer G, Gužvica G (2009) The permeability of highway in Gorski kotar (Croatia) for large mammals. Eur J Wildl Res 55:7–21. doi:10.1007/s10344-008-0208-5

    Article  Google Scholar 

  • Lesbarrères D, Fahrig L (2012) Measures to reduce population fragmentation by roads: what has worked and how do we know? Trends Ecol Evol 27:374–380. doi:10.1016/j.tree.2012.01.015

    Article  PubMed  Google Scholar 

  • Liu S, Deng L, Dong S, Zhao Q, Yang J, Wang C (2014) Landscape connectivity dynamics based on network analysis in the Xishuangbanna Nature Reserve, China. Acta Oecol 55:66–77. doi:10.1016/j.actao.2013.12.001

    Article  Google Scholar 

  • Loro M, Ortega E, Arce RM, Geneletti D (2015) Ecological connectivity analysis to reduce the barrier effect of roads. An innovative graph-theory approach to define wildlife corridors with multiple paths and without bottlenecks. Landsc Urban Plan 139:149–162. doi:10.1016/j.landurbplan.2015.03.006

    Article  Google Scholar 

  • MacArthur RH (1965) Patterns of species diversity. Biol Rev 40:510–533

    Article  Google Scholar 

  • Marsh DM, Page RB, Hanlon TJ, Corritone R, Little EC, Seifert DE, Cabe PR (2007) Effects of roads on patterns of genetic differentiation in red-backed salamanders, Plethodon cinereus. Conserv Genet 9:603–613. doi:10.1007/s10592-007-9377-0

    Article  Google Scholar 

  • Minor ES, Lookingbill TR (2010) A multiscale network analysis of protected-area connectivity for mammals in the United States. Conserv Biol 24:1549–1558. doi:10.1111/j.1523-1739.2010.01558.x

    Article  PubMed  Google Scholar 

  • Nathan R (2001) The challenges of studying dispersal. Trends Ecol Evol 16:481–483

    Article  CAS  Google Scholar 

  • Noss F (2007) Focal species for determining connectivity requirements in conservation planning. In: Mannaging and designing landscapes for conservation: moving from perspectives to principles, Blackwell, Oxford, pp 263-279

  • Ng SJ, Dole JW, Sauvajot RM, Riley SP, Valone TJ (2004) Use of highway undercrossings by wildlife in southern California. Biol Conserv 115:499–507. doi:10.1016/S0006-3207(03)00166-6

    Article  Google Scholar 

  • Ottaviani D, Cairns SC, Oliverio M, Boitani L (2006) Body mass as a predictive variable of home-range size among Italian mammals and birds. J Zool 269:317–330. doi:10.1111/j.1469-7998.2006.00060.x

    Article  Google Scholar 

  • Paradis E, Baillie SR, Sutherland WJ (2002) Modeling large-scale dispersal distances. Ecol Model 151:279–292. doi:10.1016/S0304-3800(01)00487-2

    Article  Google Scholar 

  • Pérez-Espona S, Pérez-Barbería FJ, McLeod JE, Jiggins CD, Gordon IJ, Pemberton JM (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol 17:981–996. doi:10.1111/j.1365-294X.2007.03629.x

    Article  PubMed  Google Scholar 

  • Robinson SJ, Samuel MD, Lopez DL, Shelton P (2012) The walk is never random: subtle landscape effects shape gene flow in a continuous white-tailed deer population in the Midwestern United States. Mol Ecol 21:4190–4205. doi:10.1111/j.1365-294X.2012.05681.x

    Article  PubMed  Google Scholar 

  • Rothley K (2005) Finding and filling the “cracks” in resistance surfaces for least-cost modeling. Ecol Soc. doi:10.1007/s00267-005-0258-3

    Google Scholar 

  • Rytwinski T, Fahrig L (2011) Reproductive rate and body size predict road impacts on mammal abundance. Ecol Appl 21:589–600

    Article  PubMed  Google Scholar 

  • Rytwinski T, Fahrig L (2012) Do species life history traits explain population responses to roads? A meta-analysis. Biol Conserv 147:87–98. doi:10.1016/j.biocon.2011.11.023

    Article  Google Scholar 

  • Santini L, Di Marco M, Visconti P, Baisero D, Boitani L, Rondinini C (2013) Ecological correlates of dispersal distance in terrestrial mammals. Hystrix 24:181–186. doi:10.4404/hystrix-24.2-8746

    Google Scholar 

  • Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103. doi:10.1016/j.landurbplan.2007.03.005

    Article  Google Scholar 

  • Schoonover JE, Lockaby BG, Pan S (2005) Changes in chemical and physical properties of stream water across an urban-rural gradient in western Georgia. Urban Ecosyst 8:107–124

    Article  Google Scholar 

  • Schuster R, Römer H, Germain RR (2013) Using multi-scale distribution and movement effects along a montane highway to identify optimal crossing locations for a large-bodied mammal community. PeerJ 1:e189. doi:10.7717/peerj.189

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepard ELC, Wilson RP, Rees WG, Grundy E, Lambertucci SA, Vosper SB (2013) Energy landscapes shape animal movement ecology. Am Nat 182:298–312. doi:10.1086/671257

    Article  PubMed  Google Scholar 

  • Snyder GK, Carello CA (2008) Body mass and the energy efficiency of locomotion: lessons from incline running. Comp Biochem Physiol A 150:144–150. doi:10.1016/j.cbpa.2006.09.026

    Article  Google Scholar 

  • Sutherland G, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv Ecol 4:16

    Google Scholar 

  • Taylor CR, Caldwell SL, Rowntree VJ (1972) Running up and down hills: some consequences of size. Science 178:1096–1097

    Article  CAS  PubMed  Google Scholar 

  • Van Der Ree R, Heinze D, Mccarthy M, Mansergh I (2009) Wildlife tunnel enhances population viability. Ecol Soc 14:7

    Google Scholar 

  • Vasas V, Magura T, Jordán F, Tóthmérész B (2009) Graph theory in action: evaluating planned highway tracks based on connectivity measures. Landscape Ecol 24:581–586. doi:10.1007/s10980-009-9346-8

    Article  Google Scholar 

  • Verboom J, Foppen R, Chardon P, Opdam P, Luttikhuizen P (2001) Introducing the key patch approach for habitat networks with persistent populations: an example for marshland birds. Biol Conserv 100:89–101. doi:10.1016/S0006-3207(00)00210-X

    Article  Google Scholar 

  • Vos CC, Verboom J, Opdam PF, Ter Braak CJ (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41. doi:10.1086/317004

    Article  CAS  PubMed  Google Scholar 

  • Wall J, Douglas-Hamilton I, Vollrath F (2006) Correspondences elephants avoid costly mountaineering. Curr Biol 16:527–529

    Article  Google Scholar 

  • Zetterberg A, Mörtberg UM, Balfors B (2010) Making graph theory operational for landscape ecological assessments, planning, and design. Landsc Urban Plan 95:181–191. doi:10.1016/j.landurbplan.2010.01.002

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Jean-Louis Michelot and Laurent Simon from the Ecosphere design office for the constructive discussions we had about this work, including the search for land cover and biodiversity data and the location of the study area. We also thank Gilles Vuidel for his technical improvement to the Graphab software by including slope, new habitat patches, and metapatch functions. We are grateful to Damien Roy for his extensive work on the land-cover map combination. This work was funded by the Franche-Comté region. It is a part of the Graphab 2 project managed by USR 3124 MSHE C.N. Ledoux and funded by the French Ministry of Ecology (ITTECOP program). Computations were performed on the supercomputer facilities of the “Mésocentre de calcul de Franche-Comté”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Mimet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mimet, A., Clauzel, C. & Foltête, JC. Locating wildlife crossings for multispecies connectivity across linear infrastructures. Landscape Ecol 31, 1955–1973 (2016). https://doi.org/10.1007/s10980-016-0373-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0373-y

Keywords

Navigation