Skip to main content

Advertisement

Log in

The relative importance of local versus landscape variables on site occupancy in bats of the Brazilian Cerrado

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Species site-occupancy patterns may be influenced by habitat variables at both local and landscape scales. Although local habitat variables influence whether the site is suitable for a given species, the broader landscape context can also influence site occupancy, particularly for species that are sensitive to land-use change.

Objectives

To examine the relative importance of local versus landscape variables in explaining site occupancy of eight bat species within the Brazilian Cerrado, a Neotropical savanna that is experiencing widespread habitat loss and fragmentation.

Methods

Bats were surveyed within 16 forest patches over two years. We used a multi-model information-theoretic approach, adjusted for species detection bias, to assess whether landscape variables (percent cover and number of patches of natural vegetation within a 2- and 8-km radius of each forest site) or local site variables (canopy cover, understory height, number of trees, and number of lianas) best explained site occupancy in each species.

Results

Landscape variables were among the best models (ΔAICc or ΔQAICc < 2) for four species (top-ranked model for black myotis), whereas local variables were among the best for five species (top-ranked model for vampire bats). Neither local nor landscape variables explained site occupancy in two frugivorous species.

Conclusion

Species associated with a particular habitat type will not respond similarly to the amount, distribution or relative suitability of that habitat, or even at the same scale. This reinforces the challenge of species distribution modelling, especially in the context of forecasting species’ responses to future land-use or climate-change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams SN (1975) Sheep and cattle grazing in forest: a review. J Appl Ecol 12:143–152

    Article  Google Scholar 

  • Aguiar LMS, Antonini Y (2008) Diet of two sympatric insectivores bats (Chiroptera: Vespertilionidae): in the Cerrado of Central Brazil. Rev Bras Zool 25:28–31

    Article  Google Scholar 

  • Aguiar LMS, Bernard E, Machado RB (2014) Habitat use and movements of Glossophaga soricina and Lonchophylla dekeyseri (Chiroptera: Phyllostomidae) in a Neotropical savannah. Zoologia 31:223–229

    Article  Google Scholar 

  • Aguirre LF, Lens L, Matthysen E (2003) Patterns of roost use by bats in a neotropical savanna: implications for conservation. Bull Am Mus Nat Hist 111:435–443

    Google Scholar 

  • Almeida-Gomes M, Prevedello JA, Crouzeilles R (2015) The use of native vegetation as a proxy for habitat may overestimate habitat availability in fragmented landscapes. Landscape Ecol 31:711–719

    Article  Google Scholar 

  • Arroyo-Rodríguez V, Rojas C, Saldaña-Vázquez RA, Stoner KE (2016) Landscape composition shapes phyllostomid bat assemblages more strongly than landscape configuration in a fragmented biodiversity hotspot. Biol Conserv 198:84–92

    Article  Google Scholar 

  • Avila-Cabadilla LD, Sanchez-Azofeifa GA, Stoner KE, Alvarez-Añorve MY, Quesada M, Portillo-Quintero CA (2012) Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests. PLoS ONE 7:335228

    Article  Google Scholar 

  • Barnagaud JY, Devictor V, Jiguet F, Barbet-Massin M, Le Viol I, Archaux F (2012) Relating habitat and climatic niches in birds. PLoS ONE 7:e32819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barros MAS, Pessoa DMA, Rui AM (2014) Habitat use and seasonal activity of insectivorous bats (Mammalia: Chiroptera) in the grasslands of southern Brazil. Rev Bras Zool 31:153–161

    Google Scholar 

  • Bellamy C, Scott C, Altringham J (2013) Multiscale, presence-only habitat suitability models: fine-resolution maps for eight bat species. J Appl Ecol 50:892–901

    Article  Google Scholar 

  • Bernard E, Fenton MB (2002) Species diversity of bats (Mammalia: Chiroptera) in forest fragments, primary forests, and savannas in central Amazonia, Brazil. Can J Zool 80:1124–1140

    Article  Google Scholar 

  • Bernard E, Fenton MB (2003) Bat mobility and roosts in a fragmented landscape in central Amazonia, Brazil. Biotropica 35:262–277

    Google Scholar 

  • Bianconi GV, Mikich SB, Pedro WA (2006) Movements of bats (Mammalia, Chiroptera) in Atlantic Forest remnants in southern Brazil. Rev Bras Zool 23:1199–1206

    Article  Google Scholar 

  • Blevins E, With KA (2011) Landscape context matters: local habitat and landscape effects on the abundance and patch occupancy of collared lizards in managed grasslands. Landscape Ecol 26:837–850

    Article  Google Scholar 

  • Bobrowiec PED, Gribel R (2010) Effects of different secondary vegetation types on bat community composition in Central Amazonia, Brazil. Anim Conserv 13:204–216

    Article  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and multimodel inference, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Chambers CL, Cushman SA, Medina-Fitoria A, Martínez-Fonseca J, Chávez-Velásquez M (2016) Influences of scale on bat habitat relationships in a forested landscape in Nicaragua. Landscape Ecol 31:1299–1318

    Article  Google Scholar 

  • Denzinger A, Schnitzler H-U (2013) Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front Physiol 4:1–15

    Article  Google Scholar 

  • Ducci L, Agnelli P, Di Febbraro M, Frate L, Russo D, Loy A, Carranza ML, Santini G, Roscioni F (2015) Different bat guilds perceive their habitat in different ways: a multiscale landscape approach for variable selection in species distribution modelling. Landscape Ecol 30:2147–2159

    Article  Google Scholar 

  • Duchamp JE, Swihart RK (2008) Shifts in bat community structure related to evolved traits and features of human-altered landscapes. Landscape Ecol 23:849–860

    Article  Google Scholar 

  • Erickson JL, West SD (2003) Associations of bats with local structure and landscape features of forested stands in western Oregon and Washington. J For 109:95–102

    Google Scholar 

  • Esbérard CEL (2007) Influência do ciclo lunar na captura de morcegos Phyllostomidae. Iheringia Ser Zool 97:81–85

    Article  Google Scholar 

  • Estrada-Villegas S, Meyer CFJ, Kalko EKV (2010) Effects of tropical forest fragmentation on aerial insectivorous bats in a land-bridge island system. Biol Conserv 143:597–608

    Article  Google Scholar 

  • Ethier K, Fahrig L (2011) Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landscape Ecol 26:865–876

    Article  Google Scholar 

  • Evelyn MJ, Stiles DA (2003) Roosting requirements of two frugivorous bats (Sturnira lilium and Artibeus intermedius) in fragmented neotropical forest. Biotropica 35:405–418

    Article  Google Scholar 

  • Faria D, Laps RR, Baumgarten J, Cetra M (2006) Bat and bird assemblages from forests and shade cacao plantations in two contrasting landscapes in the Atlantic Forest of southern Bahia, Brazil. Biodivers Conserv 15:587–612

    Article  Google Scholar 

  • Fenton MB, Cumming DHM, Rautenbach ILN, Cumming GS, Cumming MS, Ford, G, Taylor RD, Dunlop J, Hovorka MD, Johnston DS, Portfors CV, Kalcounis MC, Mahlanga Z (1998) Bats and the loss of tree canopy in african woodlands. Conserv Biol 12:399–407

    Article  Google Scholar 

  • Fiske IJ, Chandler RB (2011) Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Softw 43:1–23

    Article  Google Scholar 

  • Fleming TH, Geiselman C, Kress WJ (2009) The evolution of bat pollination: a phylogenetic perspective. Ann Bot 104:1017–1043

    Article  PubMed  PubMed Central  Google Scholar 

  • Frey-Ehrenbold A, Bontadina F, Arlettaz R, Obrist MK (2013) Landscape connectivity, habitat structure and activity of bat guilds in farmland-dominated matrices. J Appl Ecol 50:252–261

    Article  Google Scholar 

  • García-Morales R, Badano EI, Moreno CE (2013) Response of neotropical bat assemblages to human land use. Conserv Biol 27:1096–1106

    Article  PubMed  Google Scholar 

  • Gorresen PM, Willig MR, Strauss RE (2005) Multivariate analysis of scale-dependent associations between bats and landscape structure. Ecol Appl 15:2126–2136

    Article  Google Scholar 

  • Grantham HS, Wilson KA, Moilanen A, Rebelo T, Possingham HP (2009) Delaying conservation actions for improved knowledge: how long should we wait? Ecol Lett 12:293–301

    Article  PubMed  Google Scholar 

  • Greenhall AM, Joermann G, Schmidt U (1983) Desmodus rotundus. Mamm Species 202:1–6

    Article  Google Scholar 

  • Gregorin R, Gonçalvez E, Aires CC, Carmignotto AP (2011) Morcegos (Mammalia:Chiroptera) da Estação Ecológica Serra Geral do Tocantins: composição específica e considerações taxonômicas. Biota Neotrop 11:300–311

    Article  Google Scholar 

  • Harvey CA, Villalobos JAG (2007) Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodivers Conserv 16:2257–2292

    Article  Google Scholar 

  • Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2004) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29

    Article  Google Scholar 

  • Jacomassa FAF, Pizo MA (2010) Birds and bats diverge in the qualitative and quantitative components of seed dispersal of a pioneer tree. Acta Oecol 36:493–496

    Article  Google Scholar 

  • Kalka MB, Smith AR, Kalko EKV (2008) Bats limit arthropods and herbivory in a tropical forest. Science 320:71

    Article  CAS  PubMed  Google Scholar 

  • Kellner KF, Swihart RK (2014) Accounting for imperfect detection in ecology: a quantitative review. PLoS ONE 9:1–8

    Google Scholar 

  • Kendall WL, White GC (2009) A cautionary note on substituting spatial subunits for repeated temporal sampling in studies of site occupancy. J Appl Ecol 46:1182–1188

    Google Scholar 

  • Kerth G, Melber M (2009) Species-specific barrier effects of a motorway on the habitat use of two threatened forest-living bat species. Biol Conserv 142:270–279

    Article  Google Scholar 

  • Klingbeil BT, Willig MR (2010) Seasonal differences in population-, ensemble- and community-level responses of bats to landscape structure in Amazonia. Oikos 119:1654–1664

    Article  Google Scholar 

  • Lemke TO (1984) Foraging ecology of the long-nosed bat, Glossophaga soricina, with respect to resource availability. Ecology 65:538–548

    Article  Google Scholar 

  • López-González C, Presley SJ, Lozano A, Stevens RD, Higgins CL (2014) Ecological biogeography of mexican bats: the relative contributions of habitat heterogeneity, beta diversity, and environmental gradients to species richness and composition patterns. Ecography (Cop) 37:1–12

    Article  Google Scholar 

  • Lourenço EC, Esbérard CEL (2011) Marcação-recaptura de morcegos: relevância e exemplos de estudos ecológicos. Universidade Federal Rural do Rio de Janeiro

  • Machado IC, Vogel S (2004) The North-east-Brazilian liana, Adenocalymna dichilum (Bignoniaceae) pollinated by bats. Ann Bot 93:609–613

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackenzie DI (2005) Was it there? Dealing with imperfection detection for species presence/absence data. Aust N Z J Stat 47:65–74

    Article  Google Scholar 

  • Mackenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • Mcnab BK (1969) The economics of temperature regulation in neotropical bats. Comp Biochem Physiol 31:227–268

    Article  CAS  PubMed  Google Scholar 

  • Medellín RA, Equihua M, Amin MA (2000) Bat diversity and abundance as indicators of disturbance in neotropical rainforests. Conserv Biol 14:1666–1675

    Article  Google Scholar 

  • Mello MAR, Kalko EKV, Silva WR (2008a) Diet and abundance of the bat Sturnira lilium (Chiroptera) in a Brazilian montane Atlantic forest. J Mammal 89:485–492

    Article  Google Scholar 

  • Mello MAR, Kalko EKV, Silva WR (2008b) Movements of the bat Sturnira lilium and its role as a seed disperser of Solanaceae in the Brazilian Atlantic forest. J Trop Ecol 24:225–228

    Article  Google Scholar 

  • Mello MAR, Kalko EKV, Silva WR (2013) Effects of moonlight on the capturability of frugivorous phyllostomid bats (Chiroptera: Phyllostomidae) at different time scales. Zoologia 30:397–402

    Article  Google Scholar 

  • Mendenhall CD, Karp DS, Meyer CFJ, Hadly EA, Daily GC (2014) Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509:213–217

    Article  CAS  PubMed  Google Scholar 

  • Mendes P, Vieira TB, Oprea M, Ditchfield AD (2009) Long-distance movement of Artibeus lituratus (Chiroptera: Phyloostomidae) in the state of Espírito Santo, Brazil. Ecotropica 15:43–46

    Google Scholar 

  • Menezes LF Jr, Duarte AC, Novaes RLM, Façanha AC, Peracchi AL, Costa LM, Fernandes AFPD, Esbérard CEL  (2008) Deslocamento de Artibeus lituratus (Olfers, 1818) (Mammalia, Chiroptera) entre ilha e continente no Estado do Rio de Janeiro, Brasil. Biota Neotrop 8:243–245

    Article  Google Scholar 

  • Meyer CFJ, Kalko EKV (2008) Bat assemblages on neotropical land-bridge islands: nested subsets and null model analyses of species co-occurrence patterns. Divers Distrib 14:644–654

    Article  Google Scholar 

  • Meyer CFJ, Fründ J, Lizano WP, Kalko EKV (2007) Ecological correlates of vulnerability to fragmentation in neotropical bats. J Appl Ecol 45:381–391

    Article  Google Scholar 

  • Meyer CFJ, Aguiar LMS, Aguirre LF, Baumgarten J, Clarke FM, Cosson J, Estrada Villegas S, Fahr J, Faria D, Furey N, Henry M, Hodgkison R, Jenkins RK, Jung KG, Kingston T, Kunz TH, Gonzalez MCM, Moya I, Patterson B, Pons J, Racey PA, Rex K, Sampaio EM, Solari S, Stoner KE, Voigt CC, Von Staden D, Weise CD, Kalko EKV (2011) Accounting for detectability improves estimates of species richness in tropical bat surveys. J Appl Ecol 48:777–787

    Article  Google Scholar 

  • Moilanen A, Arponen A, Stokland JN, Cabeza M (2008) Assessing replacement cost of conservation areas: how does habitat loss influence priorities? Biol Conserv 142:575–585

    Article  Google Scholar 

  • Monadjem A, Reside A (2008) The influence of riparian vegetation on the distribution and abundance of bats in an African savanna. Acta Chiropterol 10:339–348

    Article  Google Scholar 

  • Mortelliti A, Sozio G, Boccacci F, Ranchelli E, Cecere JG, Battisti C, Boitani L (2012) Effect of habitat amount, configuration and quality in fragmented landscapes. Acta Oecol 45:1–7

    Article  Google Scholar 

  • Murphy GEP, Romanuk TN (2014) A meta-analysis of declines in local species richness from human disturbances. Ecol Evol 4:91–103

    Article  PubMed  Google Scholar 

  • Muscarella R, Fleming TH (2007) The role of frugivorous bats in tropical forest succession. Biol Rev Camb Philos Soc 82:573–590

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Society 316:335–427

    Google Scholar 

  • Pe’er G, Henle K, Dislich C, Frank K (2011) Breaking functional connectivity into components: a novel approach using an individual-based model, and first outcomes. PLoS ONE 6:e22355

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DRB (2002) Future projections for mexican faunas under global climate change scenarios. Nature 416:626–629

    Article  CAS  PubMed  Google Scholar 

  • Quesada M, Stoner KE, Lobo JA, Herrerías-Diego Y, Palacios-Guevara C, Munguía-Rosas MA, Salazar KAO, Rosas-Guerrero V (2004) Effects of forest fragmentation on pollinator activity and consequences for plant reproductive success and mating patterns. Biotropica 36:131–138

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Ramos Pereira MJ (2010) Ecological responses of frugivorous bats to seasonal fluctuation in fruit availability in amazonian forests. Biotropica 42:680–687

    Article  Google Scholar 

  • Rempel RS, Kaukinen D, Carr AP (2012) Patch analyst and patch grid. Ontario Ministry of Natural Resources, Centre for Northern Forest Ecosystem Research, Thunder Bay

    Google Scholar 

  • Ripperger SP, Tschapka M, Kalko EKV, Rodriguez-Herrera B, Mayer F (2013) Life in a mosaic landscape: anthropogenic habitat fragmentation affects genetic population structure in a frugivorous bat species. Conserv Genet 14:925–934

    Article  Google Scholar 

  • Rodríguez-San Pedro A, Simonetti JA (2015) The relative influence of forest loss and fragmentation on insectivorous bats: does the type of matrix matter? Landscape Ecol 30:1561–1572

    Article  Google Scholar 

  • Sano EE, Rosa R, Brito JLS, Ferreira LG (2010) Land cover mapping of the tropical savanna region in Brazil. Environ Monit Assess 166:113–124

    Article  PubMed  Google Scholar 

  • Sapir N, Horvitz N, Dechmann DKN, Fahr J, Wikelski M (2014) Commuting fruit bats beneficially modulate their flight in relation to wind. Proc Biol Sci 281:1–8

    Article  Google Scholar 

  • Sikes RS, Gannon WL (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92:235–253

    Article  Google Scholar 

  • Silva JMC, Bates JM (2002) Biogeographic patterns and conservation in the south american Cerrado: a tropical savanna hotspot. Bioscience 52:225–234

    Article  Google Scholar 

  • Stockwell EF (2001) Morphology and flight manoeuvrability in New World leaf-nosed bats (Chiroptera: Phyllostomidae). J Zool 254:505–514

    Article  Google Scholar 

  • Tabanez AAJ, Viana VM (2000) Patch structure within Brazilian Atlantic Forest fragments and implications for conservation. Biotropica 32:925–933

    Article  Google Scholar 

  • Thies W, Kalko EKV (2004) Phenology of neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, Carollia perspicillata and C. castanea (Phyllostomidae). Oikos 104:362–376

    Article  Google Scholar 

  • Trevelin LC, Silveira M, Port-Carvalho M, Homem DH, Cruz-Neto AP (2013) Use of space by frugivorous bats (Chiroptera: Phyllostomidae) in a restored Atlantic forest fragment in Brazil. For Ecol Manag 291:136–143

    Article  Google Scholar 

  • Voigt CC, Lewanzik D (2011) Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Proc Biol Sci 278:2311–2317

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci 106:19729–19736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DE, La Val RK (1974) Myotis nigricans. Mamm Species 39:1–3

    Article  Google Scholar 

  • With KA (1994) Using fractal analysis to assess how species perceive landscape structure. Landscape Ecol 9:25–36

    Article  Google Scholar 

  • Womack KM, Amelon SK, Thompson FR (2013) Summer home range size of female indiana bats (Myotis sodalis) in Missouri, USA. Acta Chiropterol 15:423–429

    Article  Google Scholar 

  • Zortéa M, Alho CJR (2008) Bat diversity of a Cerrado habitat in central Brazil. Biodiveris Conserv 17:791–805

    Article  Google Scholar 

Download references

Acknowledgements

The field work was supported by International Foundation for Science (D-5288-1), CNPq (486057/2012-7), PELD, Anglo American Group, and CAPES. P. Mendes was supported by a scholarship from CNPq (140648/2011-9) and the “Sandwich Doctorate Program” from CAPES. L. Signorelli was supported by a postdoctoral fellowship provided by the “Ciência sem Fronteiras” program (PDE 249755/2013-0). P. De Marco was funded by continuous productivity CNPq Grants (305542/2010-9). We are grateful to the LAPIG-UFG laboratory for providing help with satellite images. L. Sales, A. Paglia, D. Brito, R. Loyola, D. Donner, and two anonymous reviewers provided helpful comments on the manuscript. We thank S. de Jesus, P.V.S. Bernardo, L.M. Camargos, P.H.P. Braga, B.C. Gomes, C. Sobral, P. Coelho, and A. Bispo for help with the sampling design and field work; landowners for site access; ICMBio for providing the necessary permits to sample bats; and, the National Forest of Silvânia and Emas National Park for permitting us to survey bats within their conservation units. We also thank L.L. Souza for the Artibeus lituratus illustration, and P.H.P. Braga for the photo of the Incan broad-nosed bat that we used in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poliana Mendes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 124 kb)

Supplementary material 2 (XLS 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, P., With, K.A., Signorelli, L. et al. The relative importance of local versus landscape variables on site occupancy in bats of the Brazilian Cerrado. Landscape Ecol 32, 745–762 (2017). https://doi.org/10.1007/s10980-016-0483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0483-6

Keywords

Navigation