Skip to main content
Log in

Stabilization mechanism of triple helical structure of collagen molecules

  • Published:
Letters in Peptide Science Aims and scope Submit manuscript

Abstract

The role of 4-hydroxyproline (Hyp) in stabilizing collagen triple helical structure has been investigated comprehensively. Recently it was emphasized that the preferential pyrrolidine ring pucker influenced by the stereoelectronic effects of substituted groups mainly affects the thermal stability of the triple helix. To examine this explanation, we synthesized and characterized (fProR-Pro-Gly)10 and (fProS-Pro-Gly)10. According to the results of CD and analytical ultracentrifugation, (fProS-Pro-Gly)10 takes a triple helical structure and (fProR-Pro-Gly)10 exists in a single chain structure, the trend of which is not consistent with the relationship between (HypS-Pro-Gly)10 and (HypR-Pro-Gly)10. In order to rationalize experimental results as a whole, we carried out DSC analyses and determined the thermodynamic parameters associated with the structural transition of these collagen model peptides. In this paper, we reported the DSC results for (Pro-Pro-Gly)10, (Pro-HypR-Gly)10 and (Pro-fProR-Gly)10 as a part of this study. Based on those parameters, we concluded that Hyp and fPro stabilize the triple helix in different stabilizing mechanisms; the increased stability of (Pro-HypR-Gly)10 is ascribed primarily to the enthalpic effects while that of (Pro-fProR-Gly)10 is achieved through the entropic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kobayashi, Y., Sakai, R., Kakiuchi, K. and Isemura, T., Biopolymers, 9 (1970) 415.

    Article  CAS  PubMed  Google Scholar 

  2. Sakakibara, S., Inouye, K., Shudo, K., Kishida, Y., Kobayashi, Y. and Prockop, D.J., Biochim. Biophys. Acta, 303 (1973) 198.

    CAS  PubMed  Google Scholar 

  3. Inouye, K., Kobayashi, Y., Kyogoku, Y., Kishida, Y., Sakakibara, S. and Prockop D.J., Arch. Biochem. Biophys., 219 (1982) 198.

    Article  CAS  PubMed  Google Scholar 

  4. Inouye, K., Sakakibara, S. and Prockop, D.J., Biochim. Biophys. Acta, 420 (1976) 133.

    CAS  PubMed  Google Scholar 

  5. Bella, J., Eaton, M., Brodsky, B. and Berman, H.M., Science, 266 (1994) 75.

    CAS  PubMed  Google Scholar 

  6. Bella, J., Brodsky, B. and Berman, H.M., Structure, 3 (1995) 893.

    Article  CAS  PubMed  Google Scholar 

  7. Kramer, R.Z., Vitagliano, L., Bella, J., Berisio, R., Mazzarella, L., Brodsky, B., Zagari, A. and Berman, H.M., J. Mol. Biol., 280 (1998) 623.

    Article  CAS  PubMed  Google Scholar 

  8. Holmgren, S.K., Taylor, K.M., Bretscher, L.E. and Raines, R.T., Nature, 392 (1998) 666.

    Article  CAS  PubMed  Google Scholar 

  9. Bretscher, L.E., Jenkins, C.L., Taylor, K.M. and Raines, R.T., J. Am. Chem. Soc., 123 (2001) 777.

    Article  CAS  PubMed  Google Scholar 

  10. Vitagliano, L., Berisio, R., Mazzarella, L. and Zagari, A., Biopolymers, 58 (2001) 459.

    Article  CAS  PubMed  Google Scholar 

  11. Doi, M., Nishi, Y., Uchiyama, S., Nishiuchi, Y., Nakazawa, T., Ohkubo, T. and Kobayashi, Y., J. Am. Chem. Soc., 125 (2003) 9922.

    CAS  PubMed  Google Scholar 

  12. Sakakibara, S., Kishida, Y., Kikuchi, Y., Sakai, R. and Kakiuchi, K., Bull. Chem. Soc. Jpn., 41 (1968) 1273.

    CAS  Google Scholar 

  13. Doi, M., Nishi, Y., Kiritoshi, N., Iwata, T., Nago, M., Nakano, H., Uchiyama, S., Nakazawa, T., Wakamiya, T. and Kobayashi, Y., Tetrahedron, 58 (2002) 8453.

    CAS  Google Scholar 

  14. Thompson, K.S., Vinson, C. R. and Freire, E., Biochemistry 32 (1993) 5491.

    Article  CAS  PubMed  Google Scholar 

  15. Johnson, C.R., Morin, P.E., Arrowsmith, C. H. and Freire, E., Biochemistry, 34 (1995) 5309.

    CAS  PubMed  Google Scholar 

  16. Uchiyama, S., Kai, T., Kajiyama, K., Kobayashi, Y. and Tomiyama, T., Chem. Phys. Lett., 281 (1997) 92.

    Article  CAS  Google Scholar 

  17. Kai, T., Uchiyama, S., Yoshida, T., Kobayashi, Y., Kajiyama, K. and Tomiyama, T., Chem. Phys. Lett., 281 (1997) 86.

    Article  CAS  Google Scholar 

  18. Hiyama, T., Kanie, K., Kusumoto, T., Morizawa, Y. and Shimizu, M., in Hiyama, T. (Ed.), Organofluorine Compounds: Chemistry and Applications, Springer, Berlin, 2000, pp. 10–12.

    Google Scholar 

  19. Shamala, M., Row, T.N. G. and Venkatesan, K., Acta Crystallogr., Sect. B, 32 (1976) 3267.

    Article  Google Scholar 

  20. Panasik, Jr. N., Eberhardt, E.S., Edison, A.S., Powell, D. R. and Raines, R.T., Int. J. Pept. Protein Res., 44 (1994) 262.

    CAS  PubMed  Google Scholar 

  21. Improta, R., Benzi, C. and Barone, V., J. Am. Chem. Soc., 123 (2001) 12568.

    CAS  PubMed  Google Scholar 

  22. DeRider, M.L., Wilkens, S.T., Waddell, M.J., Bretscher, L.E., Weinhold, F., Raines, R. T. and Markley, J.L., J. Am. Chem. Soc., 124 (2002) 2497.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishi, Y., Doi, M., Doi susumu uchiyama, M. et al. Stabilization mechanism of triple helical structure of collagen molecules. Int J Pept Res Ther 10, 533–537 (2003). https://doi.org/10.1007/s10989-004-2420-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-004-2420-9

Navigation