Skip to main content

Advertisement

Log in

Valorization of Lipopeptides Biosurfactants as Anticancer Agents

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Biosurfactants are natural compounds produced biologically by certain bacterial strains. They are promising alternatives in several applications due to their biocompatibility, biodegradability and reduced toxicity. Systemic toxicity problems and drug resistance in tumor chemotherapy are urging the continued discovery of new antitumor agents. Biosurfactants have significant effect in inhibiting multiple tumor types. Specifically, surfactin, iturin, and fengycin lipopeptide biosurfactant were previously produced from several bacterial species belonging to Bacillus genus. Only few previous studies investigated their cytotoxicity against some tumor types such as breast, colon, leukemia, hepatoma and others. Due to the probability of being potential antitumor treatments, biosurfactants nanoparticles could be clinically recommended. This review discussed the properties of biologically-produced biosurfactants and their antitumor activities against distinctive cancer models. Additionally, it underlines their potential mechanisms and sheds light on the discovery of new active bioproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ERK:

Extracellular sign controlled kinase

ERS:

Endoplasmic reticulum stress

DOX:

Doxorubicin

IC50 :

Half inhibition concentration

Bcl-xL:

B-cell lymphoma-extra large

MDR:

Multidrug Resistant

HMEC:

Human mammary epithelial cells

TPA:

Tetradecanoylphorbol-13-acetic acid

ROS/JNK:

Reactive oxygen species/c-Jun N-terminal kinase

Akt:

Protein Kinase B pathway

MMP-9:

Matrix metallopeptidase-9

MPTP:

Mitochondrial penetrability change pore

ROS:

Reactive oxygen species

BH3:

BCL-2 homology

CLPs:

Crude cyclic lipopeptides

Cyto-C:

Cytochrome-C

Bcl-2:

B-cell lymphoma 2

PS:

Phosphatidylserine

MOMP:

Mitochondrial outer membrane permeabilization

Apaf-1:

Apoptotic protease activating factor-1

References

  • Abdelaziz HM, Elzoghby AO, Helmy MW, Samaha MW, Fang J-Y, Freag MS (2019) Liquid crystalline assembly for potential combinatorial chemo–herbal drug delivery to lung cancer cells. Int J Nanomed 14:499–517

    CAS  Google Scholar 

  • Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754

    CAS  PubMed  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    CAS  PubMed  Google Scholar 

  • Bao Y, Yin M, Hu X, Zhuang X, Sun Y, Guo Y et al (2016) A safe, simple and efficient doxorubicin prodrug hybrid micelle for overcoming tumor multidrug resistance and targeting delivery. ‎J Control Release 235:182–194

    CAS  PubMed  Google Scholar 

  • Barros FFC, Quadros CPd, Maróstica Júnior MR, Pastore GM (2007) Surfactina: propriedades químicas, tecnológicas e funcionais para aplicações em alimentos. Quim Nova, São Paulo

    Google Scholar 

  • Bie X, Lu Z, Lu F (2009) Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. J Microbiol Methods 79:272–278

    CAS  PubMed  Google Scholar 

  • Cao X, Wang A, Jiao R, Wang C, Mao D, Yan L et al (2009) Surfactin induces apoptosis and G 2/M arrest in human breast cancer MCF-7 cells through cell cycle factor regulation. Cell Biochem Biophys 55:163

    CAS  PubMed  Google Scholar 

  • Cao X-H, Wang A-H, Wang C-L, Mao D-Z, Lu M-F, Cui Y-Q et al (2010) Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem-Biol Interact 183:357–362

    CAS  PubMed  Google Scholar 

  • Cao X-H, Zhao S-S, Liu D-Y, Wang Z, Niu L-L, Hou L-H et al (2011) ROS-Ca2 + is associated with mitochondria permeability transition pore involved in surfactin-induced MCF-7 cells apoptosis. Chem-Biol Interact 190:16–27

    CAS  PubMed  Google Scholar 

  • Chen YQ, Min C, Sang M, Han YY, Ma X, Xue XQ et al (2010) A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells. Peptides 31:1504–1510

    CAS  PubMed  Google Scholar 

  • Cheng W, Feng Y, Ren J, Jing D, Wang C (2016) Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line. Neoplasma 63:215–222

    CAS  PubMed  Google Scholar 

  • Chrzanowski Ł, Ławniczak Ł, Czaczyk K (2012) Why do microorganisms produce rhamnolipids? World J Microbiol Biotechnol 28:401–419

    CAS  PubMed  Google Scholar 

  • de Gramont A, Van Cutsem E, Schmoll H-J, Tabernero J, Clarke S, Moore MJ et al (2012) Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol 13:1225–1233

    PubMed  Google Scholar 

  • Deleu M, Paquot M (2004) From renewable vegetables resources to microorganisms: new trends in surfactants. CR Chim 7:641–646

    CAS  Google Scholar 

  • Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94:2667–2679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dey G, Bharti R, Dhanarajan G, Das S, Dey KK, Kumar BP et al (2015) Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer. Sci Rep 5:10316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dey G, Bharti R, Banerjee I, Das AK, Das CK, Das S et al (2016) Pre-clinical risk assessment and therapeutic potential of antitumor lipopeptide ‘Iturin A’in an in vivo and in vitro model. RSC Adv 6:71612–71623

    CAS  Google Scholar 

  • Drusco A, Nuovo GJ, Zanesi N, Di Leva G, Pichiorri F, Volinia S et al (2014) MicroRNA profiles discriminate among colon cancer metastasis. PloS one 9:e96670

    PubMed  PubMed Central  Google Scholar 

  • Duarte C, Gudiña EJ, Lima CF, Rodrigues LR (2014) Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express 4:40

    PubMed  PubMed Central  Google Scholar 

  • Elshafie AE, Joshi SJ, Al-Wahaibi YM, Al-Bemani AS, Al-Bahry SN, Al-Maqbali D et al (2015) Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front Microbiol 6:1324

    PubMed  PubMed Central  Google Scholar 

  • Fracchia L, Cavallo M, Martinotti MG, Banat IM (2012) Biosurfactants and bioemulsifiers biomedical and related applications–present status and future potentials. Biomed Sci Eng Technol 14:326–335

    Google Scholar 

  • Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13:140–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Echeverria C, Sellers W (2008) Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27:5511

    CAS  PubMed  Google Scholar 

  • Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci 34:667–675

    PubMed  Google Scholar 

  • Hajare SN, Subramanian M, Gautam S, Sharma A (2013) Induction of apoptosis in human cancer cells by a Bacillus lipopeptide bacillomycin D. Biochimie 95:1722–1731

    CAS  PubMed  Google Scholar 

  • Henkel M, Müller MM, Kügler JH, Lovaglio RB, Contiero J, Syldatk C et al (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47:1207–1219

    CAS  Google Scholar 

  • Huang W, Lang Y, Hakeem A, Lei Y, Gan L, Yang X (2018) Surfactin-based nanoparticles loaded with doxorubicin to overcome multidrug resistance in cancers. Int J Nanomed 13:1723

    CAS  Google Scholar 

  • Janek T, Krasowska A, Radwańska A, Łukaszewicz M (2013) Lipopeptide biosurfactant pseudofactin II induced apoptosis of melanoma A 375 cells by specific interaction with the plasma membrane. PloS one 8:e57991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kameda Y, Ouhira S, Matsui K, Kanatomo S, Hase T, Atsusaka T (1974) Antitumor activity of Bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chem Pharm Bull 22:938–944

    CAS  Google Scholar 

  • Kim S-Y, Kim JY, Kim S-H, Bae HJ, Yi H, Yoon SH et al (2007) Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett 581:865–871

    CAS  PubMed  Google Scholar 

  • Lee JH, Nam SH, Seo WT, Yun HD, Hong SY, Kim MK et al (2012) The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells. Food Chem 131:1347–1354

    CAS  Google Scholar 

  • Liu X, Tao X, Zou A, Yang S, Zhang L, Mu B (2010) Effect of themicrobial lipopeptide on tumor cell lines: apoptosis induced by disturbing the fatty acid composition of cell membrane. Protein Cell 1:584–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Zhao X, Yaseen M (2007) Biomimetic amphiphiles: biosurfactants. Curr Opin Colloid Interface Sci 12:60–67

    CAS  Google Scholar 

  • Luna JM, Rufino RD, Sarubbo LA, Campos-Takaki GM (2013) Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf B 102:202–209

    CAS  Google Scholar 

  • Maneerat S (2005) Production of biosurfactants using substrates from renewable-resources. Songklanakarin J Sci Technol 27:675–683

    Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuyama T, Tanikawa T, Nakagawa Y (2011) Serrawettins and other surfactants produced by Serratia. Biosurfactants. Springer, Cham, pp 93–120

    Google Scholar 

  • Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol 175:6459–6466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M et al (2012) Rhamnolipids—next generation surfactants? J Biotechnol 162:366–380

    PubMed  Google Scholar 

  • Naughton P, Marchant R, Naughton V, Banat I (2019) Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol 127:12–28

    CAS  PubMed  Google Scholar 

  • Nitschke M, Pastore GM (2002) Biossurfactantes: propriedades e aplicações. Quim Nova, São Paulo

    Google Scholar 

  • Nozhat Z, Asadi A, Zahri S (2012) Properties of Surfactin C-15 nanopeptide and its cytotoxic effect on human cervix cancer (HeLa) cell line. J Nanomater. https://doi.org/10.1155/2012/526580

    Article  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends microbiol 16:115–125

    CAS  PubMed  Google Scholar 

  • Özcan Z, Gül G, Yaman I (2015) Ochratoxin A activates opposing c-MET/PI3K/Akt and MAPK/ERK 1–2 pathways in human proximal tubule HK-2 cells. Arch Toxicol 89:1313–1327

    PubMed  Google Scholar 

  • Pal SK, Reckamp K, Yu H, Figlin RA (2010) Akt inhibitors in clinical development for the treatment of cancer. Expert Opin Investig Drugs 19:1355–1366

    CAS  PubMed  Google Scholar 

  • Park SY, Kim J-H, Lee YJ, Lee SJ, Kim Y (2013) Surfactin suppresses TPA-induced breast cancer cell invasion through the inhibition of MMP-9 expression. Int J Oncol 42:287–296

    CAS  PubMed  Google Scholar 

  • Patel J, Borgohain S, Kumar M, Rangarajan V, Somasundaran P, Sen R (2015) Recent developments in microbial enhanced oil recovery. Renew Sustain Energy Rev 52:1539–1558

    CAS  Google Scholar 

  • Phipps AI, Lindor NM, Jenkins MA, Baron JA, Win AK, Gallinger S et al (2013) Colon and rectal cancer survival by tumor location and microsatellite instability: the Colon Cancer Family Registry. Dis Colon Rectum 56:937

    PubMed  PubMed Central  Google Scholar 

  • Rodrigues LR (2011) Inhibition of bacterial adhesion on medical devices. Bacterial adhesion. Springer, Cham, pp 351–367

    Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening J-W, Arrebola E et al (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440

    CAS  PubMed  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High-and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    CAS  PubMed  Google Scholar 

  • Saharan B, Sahu R, Sharma D (2011) A review on biosurfactants: fermentation, current developments and perspectives. Genet Eng Biotechnol J 2011:1–14

    Google Scholar 

  • Sambanthamoorthy K, Feng X, Patel R, Patel S, Paranavitana C (2014) Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiol 14:197

    PubMed  PubMed Central  Google Scholar 

  • Sharma D, Saharan BS, Chauhan N, Bansal A, Procha S (2014) Production and structural characterization of Lactobacillus helveticus derived biosurfactant. Sci World J. https://doi.org/10.1155/2014/493548

    Article  Google Scholar 

  • Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    PubMed  Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    CAS  PubMed  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121

    CAS  PubMed  Google Scholar 

  • Sivapathasekaran C, Das P, Mukherjee S, Saravanakumar J, Mandal M, Sen R (2010) Marine bacterium derived lipopeptides: characterization and cytotoxic activity against cancer cell lines. Int J Pept Res Ther 16:215–222

    CAS  Google Scholar 

  • Stanley NR, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924

    CAS  PubMed  Google Scholar 

  • Tang Q, Bie X, Lu Z, Lv F, Tao Y, Qu X (2014) Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. J Microbiol 52:675–680

    CAS  PubMed  Google Scholar 

  • Taylor H, Haskins J, Giuliano K (2007) High content screening: a powerful approach to systems cell biology and drug discovery. Humana Press Inc, Totowa

    Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects: part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620

    PubMed  Google Scholar 

  • Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 39:888–901

    CAS  Google Scholar 

  • Wang C, Ng T, Yuan F, Liu Z, Liu F (2007) Induction of apoptosis in human leukemia K562 cells by cyclic lipopeptide from Bacillus subtilis natto T-2. Peptides 28:1344–1350

    PubMed  Google Scholar 

  • Wang C, Ng T, Cao X, Jiang Y, Liu Z, Wen T et al (2009) CLP induces apoptosis in human leukemia K562 cells through Ca2 + regulating extracellular-related protein kinase ERK activation. Cancer Lett 276:221–227

    CAS  PubMed  Google Scholar 

  • Wang C-L, Liu C, Niu L-L, Wang L-R, Hou L-H, Cao X-H (2013) Surfactin-induced apoptosis through ROS–ERS–Ca2+-ERK pathways in HepG2 cells. Cell Biochem Biophys 67:1433–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Guo C, Wang Y, Liu D, Lv Y, Lv F et al (2013) Fengycin inhibits the growth of the human lung cancer cell line 95D through reactive oxygen species production and mitochondria-dependent apoptosis. Anti-Cancer Drugs 24:587–598

    CAS  PubMed  Google Scholar 

  • Yumnam S, Hong GE, Raha S, Saralamma VVG, Lee HJ, Lee WS et al (2016) Mitochondrial dysfunction and Ca2 + overload contributes to hesperidin induced paraptosis in hepatoblastoma cells, HepG2. J Cell Physiol 231:1261–1268

    CAS  PubMed  Google Scholar 

  • Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q et al (2017) Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101:5951–5960

    CAS  PubMed  Google Scholar 

  • Zhao H, Yan L, Xu X, Jiang C, Shi J, Zhang Y et al (2018) Potential of Bacillus subtilis lipopeptides in anti-cancer I: induction of apoptosis and paraptosis and inhibition of autophagy in K562 cells. AMB Express 8:78

    PubMed  PubMed Central  Google Scholar 

  • Zhao H, Xu X, Lei S, Shao D, Jiang C, Shi J et al (2019) Iturin A-like lipopeptides from Bacillus subtilis trigger apoptosis, paraptosis, and autophagy in Caco‐2 cells. J Cell Physiol 234:6414–6427

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fady Abd El-Malek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rofeal, M., El-Malek, F.A. Valorization of Lipopeptides Biosurfactants as Anticancer Agents. Int J Pept Res Ther 27, 447–455 (2021). https://doi.org/10.1007/s10989-020-10105-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-020-10105-8

Keywords

Navigation