Skip to main content
Log in

Expectation of intrinsic volumes of random polytopes

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let K be a convex body in ℝd, let j ∈ {1, …, d−1}, and let K(n) be the convex hull of n points chosen randomly, independently and uniformly from K. If ∂K is C 2+ , then an asymptotic formula is known due to M. Reitzner (and due to I. Bárány if ∂K is C 3+ ) for the difference of the jth intrinsic volume of K and the expectation of the jth intrinsic volume of K(n). We extend this formula to the case when the only condition on K is that a ball rolls freely inside K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Affentranger and J. A. Wieacker, On the convex hull of uniform random points in a simple d-polytope, Discrete Comput. Geom., 6 (1991), 291–305.

    Article  MATH  MathSciNet  Google Scholar 

  2. I. Bárány, Intrinsic volumes and f-vectors of random polytopes, Math. Ann., 285 (1989), 671–699.

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Bárány, Random polytopes in smooth convex bodies, Mathematika, 39 (1992), 81–92.

    MATH  MathSciNet  Google Scholar 

  4. I. Bárány, Random polytopes, convex bodies and approximation, Stochastic Geometry (A. Baddeley, I. Bárány, R. Schneider, W. Weil, eds.), Lecture Notes in Mathematics 1892, Springer, 2007.

  5. I. Bárány and Ch. Buchta, Random polytopes in a convex polytope, independence of shape, and concentration of vertices, Math. Ann., 297 (1993), 467–497.

    Article  MATH  MathSciNet  Google Scholar 

  6. I. Bárány and D. G. Larman, Convex Bodies, Economic Cap Covering, Random Polytopes, Mathematika, 35 (1988), 274–291.

    MATH  MathSciNet  Google Scholar 

  7. K. J. Böröczky, F. Fodor, M. Reitzner and V. Vígh, Mean width of inscribed random polytopes in a reasonably smooth convex body, submitted.

  8. H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.

    MATH  Google Scholar 

  9. P. M. Gruber, Convex and discrete geometry, Springer, Berlin, 2007.

    MATH  Google Scholar 

  10. D. Hug, Absolute continuity for curvature measures of convex sets II, Math. Z., 232 (1999), 437–485.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Hug, Measures, Curvatures and Currents in Convex Geometry, Habilitationsschrift, Universität Freiburg, 2000.

  12. D. Hug and R. Schätzle, Intersections and translative integral formulas for boundaries of convex bodies, Math. Nachr., 226 (2001), 99–128.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Leichtweiß, Affine geometry of convex bodies, Johann Ambrosius Barth Verlag, 1998.

  14. A. M. Macbeath, A theorem on non-homogeneous lattices, Ann. Math., 56 (1952), 269–293.

    Article  MathSciNet  Google Scholar 

  15. M. Meyer and S. Reisner and M. Schmuckenschläger, The volume of the intersection of a convex body with its translates, Mathematika, 40 (1992), 278–289.

    Google Scholar 

  16. M. Reitzner, Stochastic approximation of smooth convex bodies, Mathematika, 51 (2004), 11–29.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Schmuckenschläger, Notes.

  18. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  19. R. Schneider and W. Weil, Stochastic and Integral Geometry, Probability and its Applications, Springer, Berlin, 2008.

    Google Scholar 

  20. C. Schütt, Random Polytopes and Affine Surface Area, Math. Nach., 170 (1994), 227–249.

    Article  MATH  Google Scholar 

  21. C. Schütt and E. Werner, The convex floating body, Math. Scand., 66 (1990), 275–290.

    MATH  MathSciNet  Google Scholar 

  22. S. Stein, The symmetry function in a convex body, Pacific J. Math., 6 (1956), 145–148.

    MATH  MathSciNet  Google Scholar 

  23. J. G. Wendel, A problem in geometric probability, Math. Scand., 11 (1962), 109–111.

    MATH  MathSciNet  Google Scholar 

  24. J. A. Wieacker, Einige Probleme der polyedrischen Approximation, Diplomarbeit, University of Freiburg i. Br., 1978.

  25. V. A. Zalgaller, Über κ-dimensionale Richtungen, die für einen konvexen Körper F in ℝn singulär sind, Zapiski naucn. Sem. Leningrad. Otd. mat. Inst. Steklov, 27 (1972), 67–72 (in Russian); English translation: J. Soviet Math.3 (1972), 437–441.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Károly J. Böröczky Jr.

Additional information

Supported by OTKA grants 068398 and 049301, and by the EU Marie Curie TOK project DiscConvGeo.

Funded by the Marie-Curie Research Training Network “Phenomena in High-Dimensions” (MRTN-CT-2004-511953).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böröczky, K.J., Hoffmann, L.M. & Hug, D. Expectation of intrinsic volumes of random polytopes. Period Math Hung 57, 143–164 (2008). https://doi.org/10.1007/s10998-008-8143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-008-8143-4

Mathematics subject classification numbers

Key words and phrases

Navigation