Skip to main content
Log in

Cyclic loading of beams based on the Chaboche model

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The time independent non-unified version of the Chaboche constitutive model for the cyclic loading which includes the kinematic and isotropic hardening is discussed in detail. The performance of the Chaboche constitutive model in predicting ratcheting response of CS1026 steel for a broad set of mechanical uniaxial and biaxial loading histories is considered. A numerical iterative method is used to calculate the stresses and strains in beams due to cyclic loading. The reported experimental data of the stainless steel, available in the literature, is used for the verification of the results. It is concluded that the Chaboche model performs quite well in predicting the uniaxial ratcheting or shakedown responses. In addition, imposing the isotropic hardening effect to the constitutive equations results to lower ratcheting rate at initial cycles. While the kinematic hardening effect remains the major factor in prediction of the ratcheting response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Armstrong, P.J., Frederick, C.O.: A Mathematical Representation of the Multiaxial Bauschinger Effect. CEGB Report No. RD/B/N 731 (1966)

  • ASME: ASME Boiler and Pressure Vessel Code, Section VIII, Div. 2, 2002 edn. American Society of Mechanical Engineers, New York, NY (2002)

  • Bari, S.: Constitutive modeling for cyclic plasticity and ratcheting. A Thesis in partial fulfillment of the requirements for the Degree of Doctor of Philosophy, under the Guidance of Dr. Tasnim Hassan, January (2001) (Submitted)

  • Chaboche, J.L.: Time independent constitutive theories for cyclic plasticity. Int. J. Plast. 2, 149–188 (1986)

    Article  MATH  Google Scholar 

  • Chaboche, J.L.: Time independent constitutive theories for cyclic plasticity. Int. J. Plast. 2, 149–188 (1987)

    Article  Google Scholar 

  • Chaboche, J.L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 5, 247–302 (1989)

    Article  MATH  Google Scholar 

  • Chaboche, J.L.: On some modifications of kinematic hardening to improve the description of ratcheting effects. Int. J. Plast. 7, 661–678 (1991)

    Article  Google Scholar 

  • Chaboche, J.L., Rousselier, G.: On the plastic and viscoplastic constitutive equations, parts I and II. J. Press. Vessel Technol. 105, 153 (1983)

    Article  Google Scholar 

  • Chaboche, J.L.: Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals. In: 17th Polish Confererence on Mechanics of Solids, Szczyrk. Bul. de l’Acad. Polonaise des Sciences, Serie Sc. et Tech n. 25, p. 33 (1975)

  • Chaboche, J.L., Dang-Van K., Cordier, G.: Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. SMIRT-5, Division L, Berlin (1979)

  • Dafalias, Y.F., Popve, E.P.: Plastic internal variables formalism of cyclic plasticity. J. Appl. Mech. 43, 645–650 (1976)

    Google Scholar 

  • Dafalias, Y.F.: Modeling cyclic plasticity: simplicity versus sophistication. In: Desai, C.S., Gallagher, R.H. (eds.) International Conference on Constitutive Laws for Engineering Materials. Tucson (1983)

  • Eslami, M.R., Mahbadi, H.: Cyclic loading of thermal stresses. J. Therm. Stress. 24, 577–603 (2001)

    Article  Google Scholar 

  • Guionnet, C.: Modeling of ratcheting in biaxial experiments. J. Eng. Mater. Technol. 114, 149–188 (1992)

    Article  Google Scholar 

  • Hassan T., Kyriakides, S.: Ratcheting in cyclic plasticity, part I: uniaxial behavior. Int. J. Plast. 8, 91–116 (1992)

    Article  Google Scholar 

  • Inoue, T., Ioari, T., Yoshid, F., Suzuki, A., Murakami, S.: Inelastic behavior of \(2 {\frac{1} {4}}\) Cr–Mo steel under plasticity-creep interaction conditions. Nucl. Eng. Des.90, 287 (1985)

    Google Scholar 

  • Jiang, Y., Sehitoglu, H.: Modeling of cyclic ratcheting plasticity, part I development of constitutive relations J. Appl. Mech. 63, 720–725 (1996)

    Article  MATH  Google Scholar 

  • Jiang, W.: New kinematic hardening model. J. Eng. Mech. 120(10), 2000–2020 (1994)

    Google Scholar 

  • Mahbadi, H., Eslami, M.R.: Load and deformation controlled cyclic loading of beams based on the isotropic hardening model. Trans. Iran. Soc. Mech. Eng. 3(1), 28–46 (2002)

    Google Scholar 

  • Mahbadi, H., Eslami, M.R.: Cyclic loading of beams based on the Prager and Frederick-Armstrong kinematic hardening models. Int. J. Mech. Sci. 44, 859–879 (2002)

    Article  MATH  Google Scholar 

  • Mahbadi, H., Eslami, M.R.: Load and deformation controlled cyclic loading of thick vessels based on the isotropic hardening model. Trans. Iran. Soc. Mech. Eng. 4(1), 5–25 (2003)

    Google Scholar 

  • Mahbadi, H., Gowhari, A.R., Eslami, M.R.: Elastic-plastic-creep cyclic loading of beams using the Prager kinematic hardening model. J. Strain Anal. 39(2), 127–136 (2004)

    Article  Google Scholar 

  • Malinin, N.N., Khadjinsky, G.M.: Theory of creep with anisotropic hardening. J. Mech. Sci. 14, 235 (1972)

    Article  MATH  Google Scholar 

  • McDowell, D.L.: Stress state dependence of cyclic ratcheting behavior of two rail steels. Int. J. Plast. 11, 720–725 (1995)

    Article  Google Scholar 

  • Nouailhas, D., Cailleteaud, G., Marquis, D., Dufailly, J., Bollinger, E., Lieurade, H.P., Ribes, A.: On the description of cyclic hardening and of initial cold-working. In: Plasticity Today: International Syrup. on Current Trends and Results in Plasticity. Udine. Eng. Fract. Mech. 21(4), (1983a)

  • Nouailhas, D., Policella, H., Kaczmarek, H.: On the description or cyclic hardening under complex loading histories. In: Desai, C.S, Gallagher, R.H. (eds.) International Conference on Constitutive Laws for Engineering Materials, Tucson, Arizona (1983b).

  • Ohno, N., Wang, J.D.: Kinematic hardening rules with critical state of dynamic recovery, part I formulations and basic features for ratcheting behavior. Int. J. Plast. 9, 375–390 (1993)

    Article  MATH  Google Scholar 

  • Pellissier-Tanon, A., Bernard, J., Amzallag, C., Rabbe, P.: Evaluation of the resistance of type 316 stainless steel agianst progressive deformation. In: Low Cycle Fatigue and Life Prediction. ASTM STP770, Firminy, France (1980)

  • Plenard, E., Fromont, C.: Some properties relevant to non-linear elasticity materials. In: Yan et al. (eds.) ICM-5. Pergamon, Beijing, China, pp. 765–771 (1987)

  • Prager, W.: A new method of analyzing stresses and strains work-hardening plastic solids. J. Appl. Mech. 23, 493-496 (1956) (December)

    Google Scholar 

  • Voyiadjis, G.Z., Basuroychowdhury, I.N.: A plasticity model for multi-axial cyclic loading and ratchetting. Acta Mech. 126, 19–35 (1998)

    Article  MATH  Google Scholar 

  • Walker, K.P.: Research and development program for non-linear structural modeling with advanced time-temperature dependent constitutive relationships. Report PWA-5700-50, NASA CR-165533, (2000)

  • Zhan, Z. L., Tong, J.: A study of cyclic plasticity and viscoplastic in a new nickle based superalloy using unified constutive equations. Part I: evaluation and determination of material parameters. Mech. Mater. 39, 64–72 (2007)

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the National Elite Foundations to provide the grant of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Eslami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shojaei, A., Eslami, M.R. & Mahbadi, H. Cyclic loading of beams based on the Chaboche model. Int J Mech Mater Des 6, 217–228 (2010). https://doi.org/10.1007/s10999-010-9131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-010-9131-5

Keywords

Navigation