Skip to main content
Erschienen in: International Journal of Mechanics and Materials in Design 3/2013

01.09.2013

Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization

verfasst von: Jeremy Lehman, Roderic Lakes

Erschienen in: International Journal of Mechanics and Materials in Design | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For engineering applications that are subject to large fluctuations in temperature, yet dimensional stability is essential, low or even zero thermal expansion materials are desirable. In addition to providing minimal thermal expansion care must be taken to ensure reductions in mechanical stiffness are mitigated. This can be achieved be designing structurally hierarchical materials composed of carefully chosen lattice structures. Within this manuscript honeycombs with thermal expansion coefficients equal to zero are developed analytically. The two dimensional lattice microstructure designs described are made of positive expansion materials. Zero expansion is attained with the use of curved, bi-material rib elements that by the use of thermally induced bending achieves zero overall thermal expansion. This work builds upon previous results, and provides further analysis into creating an optimal rib cross section to increase mechanical stiffness. The design of ribs with Tee shaped and I shaped cross sections is developed. Analytical equations are derived for the overall mechanical stiffness and overall thermal expansion coefficients of the lattices. The behavior of these lattices is compared with that of triangular and regular hexagonal honeycombs having non-zero thermal expansion as well as prior zero expansion lattices with rectangular rib cross sections in a modulus-density map. Lattice relative stiffness is improved by as much as a factor of 2.4 when compared with a curved, triangular, zero thermal expansion lattice with ribs of rectangular section. Thermal shear stress at the material interface is calculated and found to be small.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat ASM International Materials Properties Database Committee: Thermal Properties of Metals. ASM International, Materials Park (2002). ASM Ready Reference ASM International Materials Properties Database Committee: Thermal Properties of Metals. ASM International, Materials Park (2002). ASM Ready Reference
Zurück zum Zitat Cribb, J.L.: Shrinkage and thermal expansion of a two-phase material. Nature 220, 576–577 (1968)CrossRef Cribb, J.L.: Shrinkage and thermal expansion of a two-phase material. Nature 220, 576–577 (1968)CrossRef
Zurück zum Zitat Gibson, L.J., Ashby, M.F.: Cellular Solids, vol. 2. Cambridge University Press, Cambridge (1997) Gibson, L.J., Ashby, M.F.: Cellular Solids, vol. 2. Cambridge University Press, Cambridge (1997)
Zurück zum Zitat Hashin, Z.: Analysis of composite materials—a survey. J. Appl. Mech. 50, 481–505 (1983)MATHCrossRef Hashin, Z.: Analysis of composite materials—a survey. J. Appl. Mech. 50, 481–505 (1983)MATHCrossRef
Zurück zum Zitat Hunt, H.E.M.: The mechanical strength of ceramic honeycomb monoliths as determined by simple experiments. Chem. Eng. Res. Des. A71, 257–266 (1993) Hunt, H.E.M.: The mechanical strength of ceramic honeycomb monoliths as determined by simple experiments. Chem. Eng. Res. Des. A71, 257–266 (1993)
Zurück zum Zitat Lakes, R.S.: Cellular solid structures with unbounded thermal expansion. J. Mater. Sci. Lett. 15, 475–477 (1996) Lakes, R.S.: Cellular solid structures with unbounded thermal expansion. J. Mater. Sci. Lett. 15, 475–477 (1996)
Zurück zum Zitat Lakes, R.S.: Solids with tunable positive or negative thermal expansion of unbounded magnitude. Appl. Phys. Lett. (2007). doi:10.1063/1.2743951 Lakes, R.S.: Solids with tunable positive or negative thermal expansion of unbounded magnitude. Appl. Phys. Lett. (2007). doi:10.​1063/​1.​2743951
Zurück zum Zitat Lehman, J.J., Lakes, R.S.: Stiff lattices with zero thermal expansion. J. Intell. Mater. Syst. Struct. 23, 1263–1268 (2012)CrossRef Lehman, J.J., Lakes, R.S.: Stiff lattices with zero thermal expansion. J. Intell. Mater. Syst. Struct. 23, 1263–1268 (2012)CrossRef
Zurück zum Zitat Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)MATHCrossRef Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)MATHCrossRef
Zurück zum Zitat Paul, B.: Prediction of elastic constants of multiphase materials. Trans. Metall. Soc. AIME 218, 36–41 (1960) Paul, B.: Prediction of elastic constants of multiphase materials. Trans. Metall. Soc. AIME 218, 36–41 (1960)
Zurück zum Zitat Sokolnikoff, I.S.: Mathematical Theory of Elasticity, vol. 2. Krieger, Malabar (1983)MATH Sokolnikoff, I.S.: Mathematical Theory of Elasticity, vol. 2. Krieger, Malabar (1983)MATH
Zurück zum Zitat Steeves, C.A., e Lucato, S.L., He, M., et al.: Concepts for structurally robust materials that combine low thermal expansion with high stiffness. J. Mech. Phys. Solids 55, 1803–1822 (2007)MathSciNetMATHCrossRef Steeves, C.A., e Lucato, S.L., He, M., et al.: Concepts for structurally robust materials that combine low thermal expansion with high stiffness. J. Mech. Phys. Solids 55, 1803–1822 (2007)MathSciNetMATHCrossRef
Zurück zum Zitat Timoshenko, S.P.: Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11, 233–235 (1925)CrossRef Timoshenko, S.P.: Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11, 233–235 (1925)CrossRef
Zurück zum Zitat Wang, Y.C., Lakes, R.S.: Extreme thermal expansion, piezoelectricity, and other coupled field properties in composites with a negative stiffness phase. J. Appl. Phys. 90, 6458–6465 (2001)CrossRef Wang, Y.C., Lakes, R.S.: Extreme thermal expansion, piezoelectricity, and other coupled field properties in composites with a negative stiffness phase. J. Appl. Phys. 90, 6458–6465 (2001)CrossRef
Zurück zum Zitat Woolger, C.: Invar nickel-iron alloy: 100 years. Mater. World 4, 332–333 (1996) Woolger, C.: Invar nickel-iron alloy: 100 years. Mater. World 4, 332–333 (1996)
Zurück zum Zitat Young, W.C.: Roark’s Formula’s for Stress and Strain, vol. 6. McGraw-Hill, New York (1989) Young, W.C.: Roark’s Formula’s for Stress and Strain, vol. 6. McGraw-Hill, New York (1989)
Metadaten
Titel
Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization
verfasst von
Jeremy Lehman
Roderic Lakes
Publikationsdatum
01.09.2013
Verlag
Springer Netherlands
Erschienen in
International Journal of Mechanics and Materials in Design / Ausgabe 3/2013
Print ISSN: 1569-1713
Elektronische ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-012-9210-x

Weitere Artikel der Ausgabe 3/2013

International Journal of Mechanics and Materials in Design 3/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.