Skip to main content
Erschienen in: International Journal of Mechanics and Materials in Design 1/2019

09.02.2018

Atomic-scale finite element modelling of mechanical behaviour of graphene nanoribbons

verfasst von: D. A. Damasceno, E. Mesquita, R. K. N. D. Rajapakse, R. Pavanello

Erschienen in: International Journal of Mechanics and Materials in Design | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Experimental characterization of Graphene NanoRibbons (GNRs) is still an expensive task and computational simulations are therefore seen as a practical option to study the properties and mechanical response of GNRs. Design of GNR elements in various nanotechnology devices can be approached through molecular dynamics simulations. This study demonstrates that the atomic-scale finite element method (AFEM) based on the second generation REBO potential is an efficient and accurate alternative to the molecular dynamics simulation of GNRs. Special atomic finite elements are proposed to model graphene edges. Extensive comparisons are presented with MD solutions to establish the accuracy of AFEM. It is also shown that the Tersoff potential is not accurate for GNR modeling. The study demonstrates the influence of chirality and size on design parameters such as tensile strength and stiffness. Graphene is stronger and stiffer in the zigzag direction compared to the armchair direction. Armchair GNRs shows a minor dependence of tensile strength and elastic modulus on size whereas in the case of zigzag GNRs both modulus and strength show a significant size dependency. The size-dependency trend noted in the present study is different from the previously reported MD solutions for GNRs but qualitatively agrees with experimental results. Based on the present study, AFEM can be considered a highly efficient computational tool for analysis and design of GNRs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)CrossRef Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)CrossRef
Zurück zum Zitat Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter 14, 783–802 (2002) Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter 14, 783–802 (2002)
Zurück zum Zitat Chen, C., Hone, J.: Graphene nanoelectromechanical systems. Proc. IEEE 101(7), 1766 (2013)CrossRef Chen, C., Hone, J.: Graphene nanoelectromechanical systems. Proc. IEEE 101(7), 1766 (2013)CrossRef
Zurück zum Zitat Choi, W., Lee, J.-W. (eds.): Graphene: Synthesis and Applications. CRC Press, Boca Raton (2016) Choi, W., Lee, J.-W. (eds.): Graphene: Synthesis and Applications. CRC Press, Boca Raton (2016)
Zurück zum Zitat Chu, Y., Ragab, T., Basaran, C.: The size effect in mechanical properties of finite-sized graphene nanoribbon. Comput. Mater. Sci. 81, 269–274 (2014)CrossRef Chu, Y., Ragab, T., Basaran, C.: The size effect in mechanical properties of finite-sized graphene nanoribbon. Comput. Mater. Sci. 81, 269–274 (2014)CrossRef
Zurück zum Zitat Dewapriya, M.A.N.: Molecular dynamics study of effects of geometric defects on the mechanical properties of graphene. Master’s thesis, University of British Columbia (2012) Dewapriya, M.A.N.: Molecular dynamics study of effects of geometric defects on the mechanical properties of graphene. Master’s thesis, University of British Columbia (2012)
Zurück zum Zitat Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. Int. J. Fract. (2014). https://doi.org/10.1115/1.4027681 Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. Int. J. Fract. (2014). https://​doi.​org/​10.​1115/​1.​4027681
Zurück zum Zitat Gajbhiye, S.O., Singh, S.P.: Multiscale nonlinear frequency response analysis of single-layered graphene sheet under impulse and harmonic excitation using the atomistic finite element method. J. Phys. D Appl. Phys. 48, 145305 (2015)CrossRef Gajbhiye, S.O., Singh, S.P.: Multiscale nonlinear frequency response analysis of single-layered graphene sheet under impulse and harmonic excitation using the atomistic finite element method. J. Phys. D Appl. Phys. 48, 145305 (2015)CrossRef
Zurück zum Zitat Haile, J.M.: Molecular Dynamics Simulation. Wiley, New York (1992) Haile, J.M.: Molecular Dynamics Simulation. Wiley, New York (1992)
Zurück zum Zitat Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef
Zurück zum Zitat Liera, G.V., Alsenoyb, C.V., Dorenc, V.V., Geerlingsd, P.: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem. Phys. Lett. 326, 181–185 (2000)CrossRef Liera, G.V., Alsenoyb, C.V., Dorenc, V.V., Geerlingsd, P.: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem. Phys. Lett. 326, 181–185 (2000)CrossRef
Zurück zum Zitat Liu, B., Huang, Y., Jiang, H., Qu, S., Hwang, K.C.: The atomic-scale finite element method. Comput. Methods Appl. Mech. Eng. 193, 1849–1864 (2004)CrossRefMATH Liu, B., Huang, Y., Jiang, H., Qu, S., Hwang, K.C.: The atomic-scale finite element method. Comput. Methods Appl. Mech. Eng. 193, 1849–1864 (2004)CrossRefMATH
Zurück zum Zitat Liu, B., Jiang, H., Huang, Y., Qu, S., Yu, M.-F., Hwang, K.C.: Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes. Phys. Rev. B 72, 035435 (2005)CrossRef Liu, B., Jiang, H., Huang, Y., Qu, S., Yu, M.-F., Hwang, K.C.: Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes. Phys. Rev. B 72, 035435 (2005)CrossRef
Zurück zum Zitat Njuguna, B., Pielichowski, K.: Polymer nanocomposites for aerospace applications: properties. Adv. Eng. Mater. 5, 769–778 (2003)CrossRef Njuguna, B., Pielichowski, K.: Polymer nanocomposites for aerospace applications: properties. Adv. Eng. Mater. 5, 769–778 (2003)CrossRef
Zurück zum Zitat Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
Zurück zum Zitat Shi, M.X., Li, Q.M., Liu, B., Feng, X.Q., Huang, Y.: Atomic-scale finite element analysis of vibration mode transformation in carbon nanorings and single-walled carbon nanotubes. Int. J. Solids Struct. 46, 4342–4360 (2009)CrossRefMATH Shi, M.X., Li, Q.M., Liu, B., Feng, X.Q., Huang, Y.: Atomic-scale finite element analysis of vibration mode transformation in carbon nanorings and single-walled carbon nanotubes. Int. J. Solids Struct. 46, 4342–4360 (2009)CrossRefMATH
Zurück zum Zitat Shin, M.K., Kim, S.I., Kim, S.J., Kim, S.-K., Lee, H., Spinks, G.M.: Size-dependent elastic modulus of single electroactive polymer nanofibers. Appl. Phys. Lett. 89, 231929 (2006)CrossRef Shin, M.K., Kim, S.I., Kim, S.J., Kim, S.-K., Lee, H., Spinks, G.M.: Size-dependent elastic modulus of single electroactive polymer nanofibers. Appl. Phys. Lett. 89, 231929 (2006)CrossRef
Zurück zum Zitat Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000)CrossRef Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000)CrossRef
Zurück zum Zitat Terdalkar, S.S., Huang, S., Yuan, H., Rencis, J.J., Zhu, T., Zhang, S.: Nanoscale fracture in graphene. Chem. Phys. Lett. 494, 218–222 (2010)CrossRef Terdalkar, S.S., Huang, S., Yuan, H., Rencis, J.J., Zhu, T., Zhang, S.: Nanoscale fracture in graphene. Chem. Phys. Lett. 494, 218–222 (2010)CrossRef
Zurück zum Zitat Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1987)CrossRef Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1987)CrossRef
Zurück zum Zitat Tersoff, J.: Empirical interatomic potential for carbon with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879 (1988)CrossRef Tersoff, J.: Empirical interatomic potential for carbon with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879 (1988)CrossRef
Zurück zum Zitat Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Compos. B Eng. 36, 468–477 (2005)CrossRef Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Compos. B Eng. 36, 468–477 (2005)CrossRef
Zurück zum Zitat Zhao, H., Min, K., Aluru, N.R.: Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9, 3012–3015 (2009)CrossRef Zhao, H., Min, K., Aluru, N.R.: Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9, 3012–3015 (2009)CrossRef
Metadaten
Titel
Atomic-scale finite element modelling of mechanical behaviour of graphene nanoribbons
verfasst von
D. A. Damasceno
E. Mesquita
R. K. N. D. Rajapakse
R. Pavanello
Publikationsdatum
09.02.2018
Verlag
Springer Netherlands
Erschienen in
International Journal of Mechanics and Materials in Design / Ausgabe 1/2019
Print ISSN: 1569-1713
Elektronische ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-018-9403-z

Weitere Artikel der Ausgabe 1/2019

International Journal of Mechanics and Materials in Design 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.