Skip to main content
Log in

Hydrogen as a technological medium for the formation of nanostructures in Sm–Co ferromagnetic alloys

  • Published:
Materials Science Aims and scope

We present a survey of the results of application of various modes of hydrogen treatment of ferromagnetic materials based on the SmCo5 compound aimed at the formation of anisotropic nanostructures, namely, of mechanochemical milling, thermal treatment [hydrogenation, disproportionation, desorption, and recombination (HDDR)] of alloys in hydrogen, and the combination of milling in hydrogen with HDDR. It is shown that HDDR enables us to get alloys containing the SmCo5, Sm2Co17, and Sm2Co7 phases with grain sizes within the range 60–100 nm and the single-phase magnetic behavior. The anisotropic powders with microstructural grain sizes within the range 40–75 nm and coercive forces higher than 40 kOe were obtained after milling in hydrogen combined with HDDR. A combined method of processing including the procedure of milling of the alloys in hydrogen and HDDR treatment is proposed for the formation of the microstructure of ferromagnetic alloys with high dispersion and high magnetic properties. It is experimentally demonstrated that the formation of anisotropy in ferromagnetic alloys by disproportionation and recombination is possible if the residual amounts of the main phase of the alloy remain in the metal after disproportionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. J. Strnat and R. M. W. Strnat, “Rare earth-cobalt permanent magnets,” J. Magn. Magn. Mater., 100, 38–56 (1991).

    Article  CAS  Google Scholar 

  2. R. Coehoorn, D. B. de Mooij, and C. de Waard, “Melt-spun permanent magnet materials containing Fe3B as the main phase,” J. Magn. Magn. Mater., 80, 101–104 (1989).

    Article  CAS  Google Scholar 

  3. E. F. Kneller and R. Hawig, “The exchange-spring magnet: A new material principle for permanent magnets,” IEEE Trans. Magn., 27, 3588–3600 (1991).

    Article  CAS  Google Scholar 

  4. J. Ping Liu, E. Fullerton, O. Gutfleisch, and D. J. Sellmyer (editors), Nanoscale Magnetic Materials and Applications, Springer, New York (2009).

  5. R. Manaf, R. A. Buckley, and H. A. Davis, “New nanocrystalline high-remanence Nd–Fe–B alloys by rapid solidification,” J. Magn. Magn. Mater., 128, 302–306 (1993).

    Article  CAS  Google Scholar 

  6. L. Withanawasam, G. C. Hadjipanayis, and R. F. Krause, “Enhanced remanence in isotropic Fe-rich melt-spun Nd–Fe–B ribbons,” J. Appl. Phys., 75, 6646–6648 (1994).

    Article  Google Scholar 

  7. J. Ding, P. G. McCormick, and R. Street, “Remanence enhancement in mechanically alloyed isotropic Sm7Fe93-nitride,” J. Magn. Magn. Mater., 124 1–4 (1993).

    Article  Google Scholar 

  8. O. Donnell, C. Kuhrt, and J. M. D. Coey, “Influence of nitrogen content on coercivity in remanence-enhanced mechanically alloyed Sm– Fe–N,” J. Appl. Phys., 76, 7068–7070 (1994).

    Article  Google Scholar 

  9. D. Lee, S. Bauser, A. Higgins, et al., “Bulk anisotropic composite rare earth magnets,” J. Appl. Phys., 99, 08B516-1–108B516-3 (2006).

    Google Scholar 

  10. G. C. Hadjipanayis and A. M. Gabay, “Overview of the high-temperature 2:17 magnets,” in: HPMA’04, 18th Internat. Workshop on High Performance Magnets and Their Applications, Annecy (France) August 29–September 2 (2004) (on CD).

  11. G. C. Hadjipanayis, J. Liu, A. M. Gabay, and M. Marinesku, “Current status of rare-earth permanent magnet research in USA,” in: Proc. of the 19th Internat. Workshop on High Performance Magnets and Their Applications (Beijing China) 30.08–01.09.2006) (2006), pp. 12–22.

  12. A. M. Gabay, W. F., Li, and G. C. Hadjipanayis, “Effect of hot deformation on texture and magnetic properties of Sm–Co and Pr– Co alloy,” J. Magn. Magn. Mater., 323, 2470–2473 (2011).

    Article  CAS  Google Scholar 

  13. N. Cannesan and I. R. Harris, “Aspects of NdFeB HDDR powders: fundamentals and processing,” in: G. C. Hadjipanayis (editor), Bonded Magnets, NATO Science Series: II. Mathematics, Physics, and Chemistry, Kluwer, Dordrecht (2002), pp. 13–36.

    Google Scholar 

  14. Y. Honkura, “HDDR magnets and their potential use for automotive applications,” in: Proc. 18th Internat. Workshop on High Performance Magnets and Their Applications, Annecy (France), 2004, pp. 559–565 (on CD).

  15. O. Gutfleisch, M. Matzinger, J. Fidler, and I. R. Harris, “Characterization of solid-HDDR processed Nd16Fe76B8 alloys by means of electron microscopy,” J. Magn. Magn. Mater., 147, 320–330 (1995).

    Article  CAS  Google Scholar 

  16. I. I. Bulyk, Yu. B. Basaraba, A. M. Trostyanchyn, and V. M. Davydov, “Disproportionation in hydrogen and recombination of the Laves phases of zirconium with chromium,” Mater. Sci., 41, No. 3, 395–405 (2005).

    Article  CAS  Google Scholar 

  17. M. Kubis, A. Handstein, B. Gebel, et al., “Highly coercive SmCo5 magnets prepared by a modified hydrogenation-disproportionation-desorption-recombination process,” J. Appl. Phys., 85, 5666–5668 (1999).

    Article  CAS  Google Scholar 

  18. O. Gutfleisch, M. Kubis, A. Handstein et al., “Hydrogenation disproportionation desorption recombination in Sm–Co alloys by means of reactive milling,” Appl. Phys. Lett., 73, 3001–3003 (1998).

    Article  CAS  Google Scholar 

  19. A. Handstein, M. Kubis, O. Gutfleisch et al., “HDDR of Sm–Co alloys using high hydrogen pressures,” J. Magn. Magn. Mater., 192, 73–76 (1999).

    Article  CAS  Google Scholar 

  20. I. I. Bulyk, V. V. Panasyuk, and A. M. Trostianchyn, “Features of the HDDR process in alloys based on the SmCo5 compound,” J. Alloys Comp., 379, 154–160 (2004).

    Article  CAS  Google Scholar 

  21. I. I. Bulyk and A. M. Trostyanchyn, “Structure of an alloy based on SmCo5 after disproportionation-recombination,” Mater. Sci., 42, No. 5, 644–648 (2006).

    Article  CAS  Google Scholar 

  22. I. I. Bulyk and A. M. Trostyanchyn, “Hydrogenation-disproportionation in samarium-cobalt ferromagnetic alloys based on Sm2(Co,Fe,Cu, Zr)17,” Mater. Sci., 39, No. 4, 395–405 (2003).

    Article  Google Scholar 

  23. S. Tao, J. Tian, X. Lu, et al., “Anisotropic bonded NdFeB magnets with radial oriented magnetization by 2-step warm compaction process,” J. Alloys Comp., 477, 510–514 (2009).

    Article  CAS  Google Scholar 

  24. I. I. Bulyk, A. M. Trostianchyn, V. G. Synyushko, et al., “Phase transformations in LaNi5−x Co x –H2 system,” Intermetallics, 13, 1220–1224 (2005).

    Article  CAS  Google Scholar 

  25. I. I. Bulyk, V. V. Panasyuk, and A. M. Trostyanchyn, Procedure of Formation of Anisotropic Fine-Grained Structures of the Powders of Alloys of the Sm–Co System by Their Hydrogen-Vacuum Thermal Treatment [in Ukrainian], Patent 96,810 (Ukraine). H 01 F 1/053; H 01 F 1/055; B 82 B 3/00, Publ. on 12.12.2011, Bull. No. 23.

  26. I. I. Bulyk, V. V. Panasyuk, and A. M. Trostyanchyn, Procedure of Formation of Anisotropic Fine-Grained Structures of the Powders of Alloys of the Sm–Co System by Their Milling in Hydrogen [in Ukrainian], Patent 96,811 (Ukraine). H 01 F 1/053; H 01 F 1/055; B 82 B 3/00, Publ. on 12.12.2011, Bull. No. 23.

  27. I. I. Bulyk, Yu. B. Basaraba, and V. I. Markovych, “Production of functional nanocrystalline materials in hydrogen,” Mater. Sci., 39, No. 6, 841–848 (2003).

    Article  CAS  Google Scholar 

  28. I. I. Bulyk, R. V. Denys, V. V. Panasyuk, Yu. H. Putilov, and A. M. Trostyanchyn, “HDDR process and the hydrogen-absorption properties of the didymium-aluminum-iron-boron (Dd12.3Al1.2Fe79.4B6) alloy,” Mater. Sci., 37, No. 4, 544–550 (2001).

    Article  CAS  Google Scholar 

  29. http://www.ccp14.ac.uk/.

  30. www.ill.eu/sites/fullprof.

  31. L. G. Akselrud, Yu. N. Grin, and P. Yu. Zavalij, “CSD-universal program package for single crystal or powder structure data treatment,” in: Collected Abstr. of the 12th Europ. Crystallographic Meeting (Moscow, 20–29.08.1989) [in Russian], Vol. 3, Nauka, Moscow (1989), p. 155.

  32. V. K. Pecharskii, L. G. Akselrud, and P. Yu. Zavalij, “On the method of taking into account the influence of predominant orientation (texture) in powder specimens for the investigation of the atomic structures of substances,” Kristallografiya, No. 4, 874–877 (1987).

  33. www.sigmaaldrich.com.

  34. I. I. Bulyk, A. M. Trostyanchyn, and V. I. Markovych, “Hydrogen-induced phase transformations in alloys based on SmCo5 under pressures of up to 650 kPa,” Mater. Sci., 43, No. 1, 102–108 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Bulyk.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol.48, No.1, pp.9–18, January–February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulyk, I.I., Panasyuk, V.V. Hydrogen as a technological medium for the formation of nanostructures in Sm–Co ferromagnetic alloys. Mater Sci 48, 1–11 (2012). https://doi.org/10.1007/s11003-012-9466-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-012-9466-1

Keywords

Navigation