Skip to main content
Log in

Computer analysis of characteristic elements of fractographic images

  • Published:
Materials Science Aims and scope

For the quantitative analysis of fractographic images, we have used the method of segmentation of fractographic images by multilevel thresholding. In contrast to known approaches, to decrease the distortion of a segmented image, we took into account common features characteristic of not only its large components, but also small ones, to which low peaks correspond in the histogram of brightness. This has enabled us to separate an image of a fragment of a fracture surface into connected regions and then determine and analyze their quantitative characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O. Z. Student, B. P. Rusyn, B. P. Kysil’, M. I. Kobasyar, T. P. Stakhiv, and A. D. Markov, “Quantitative analysis of structural changes in steel caused by high-temperature holding in hydrogen,” Fiz.-Khim. Mekh. Mater., 39, No. 1, 22–28 (2003); English translation: Mater. Sci., 39, No. 1, 17–24 (2003).

    Google Scholar 

  2. R. Ya. Kosarevych, O. Z. Student, Ya. D. Onyshchak, A. D. Markov, I. V. Ripei, B. P. Rusyn, and H. M. Nykyforchyn, “Estimation of damage to the collector of a water economizer by thermal fatigue cracks,” Fiz.-Khim. Mekh. Mater., 40, No. 1, 109–114 (2004); English translation: Mater. Sci., 40, No. 1, 132–138 (2004).

    Google Scholar 

  3. I. M. Zhuravel’, L. M. Svirs’ka, O. Z. Student, R. A. Vorobel’, and H. M. Nykyforchyn, “Automated determination of grain geometry in an exploited steam-pipeline steel,” Fiz.-Khim. Mekh. Mater., 45, No. 3, 23–29 (2009); English translation: Mater. Sci., 45, No. 3, 350–357 (2009).

    Google Scholar 

  4. R. A. Vorobel’, I. M. Zhuravel’, L. M. Svirs’ka, and O. Z. Student, “Automatic selection and quantitative analysis of carbides on grain boundaries of 12Kh1MF steel after operation at a steam pipeline of a thermal power plant,” Fiz.-Khim. Mekh. Mater., 47, No. 3, 109–115 (2011); English translation: Mater. Sci., 47, No. 3, 393–400 (2011).

    Google Scholar 

  5. C. D. Beachem, “Microscopic fracture process,” in: H. Liebowitz (editor), Fracture, Vol. 1, Academic Press, New York–London (1968), pp. 243–349.

  6. O. M. Romaniv, Yu. V. Zyma, and H. V. Karpenko, Electron Fractography of Hardened Steels [in Ukrainian], Naukova Dumka, Kyiv (1974).

    Google Scholar 

  7. A. A. Shanyavskii, Safe Fatigue Fracture of Aircraft Structures. Synergetics in Engineering Applications [in Russian], Monografiya, Ufa (2003).

  8. J. P. Bandstra and D. A. Koss, “On the influence of void clusters on void growth and coalescence during ductile fracture,” Acta Mater., 56, No. 16, 4429–4439 (2008).

    Article  CAS  Google Scholar 

  9. K. Srinivasan, Y. Huang, O. Kolednik, and T. Siegmund, “The size dependence of micro-toughness in ductile fracture,” J. Mech. Phys. Solids, 56, No. 8, 2707–2726 (2008).

    Article  Google Scholar 

  10. L. Jacobsson and C. Persson, “In situ scanning electron microscopy study of fatigue crack propagation,” Strength Mater., 40, No. 1, 146–149 (2008).

    Article  Google Scholar 

  11. S. Cicero, R. Lacalle, R. Cicero, and J. Garcia, “Failure analysis of a steam generator superheater drain tube used in a dump,” Eng. Fail. Anal., 17, 301–312, (2010).

    Article  CAS  Google Scholar 

  12. A. A. Shanyavskiy and Yu. A. Potapenko, “In-service fatigue fracture mechanisms in covered disks of a TV3-117VK helicopter turbine engine,” Strength Mater., 40, No. 1, 158–161 (2008).

    Article  CAS  Google Scholar 

  13. M. Kowalik, “Influence of deformation on the structure and properties of materials in longitudinal cold rolling of multidiameter shafts,” Fiz.-Khim. Mekh. Mater., 46, No. 5, 97–101 (2010); English translation: Mater. Sci., 46, No. 5, 679–684 (2010).

    Google Scholar 

  14. V. S. Ivanova and A. A. Shanyavskii, Quantitative Fractography [in Russian], Metallurgiya, Chelyabinsk (1988).

    Google Scholar 

  15. B. Sankur and M. Sezgin, “A survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging, 13, No. 1, 146–165 (2004).

    Article  Google Scholar 

  16. Y. J. Zhang, “A survey on evaluation methods for image segmentation,” Pattern Recogn., 29, No. 10, 1335–1346 (1996).

    Article  Google Scholar 

  17. A. Z. Arifin and A. Asano, “Image segmentation by histogram thresholding using hierarchical cluster analysis,” Pattern Recogn. Lett., 27, No. 10, 1515–1521 (2006).

    Article  Google Scholar 

  18. S. Arora, J. Acharya, A. Verma, and P. K. Panigrahi, “Multilevel thresholding for image segmentation through a fast statistical recursive algorithm,” Pattern Recogn. Lett., 29, No. 3, 119–125 (2008).

    Article  Google Scholar 

  19. A. Nakib, H. Oulhadj, and P. Siarry, “Image histogram thresholding based on multiobjective optimization,” Signal Processing, 87, No. 12, 2516–2534 (2007).

    Article  Google Scholar 

  20. N. Otsu, “A threshold selection using grey level histograms,” IEEE Trans. Syst. Man Cybern., 9, No. 1, 62–69 (1979).

    Article  Google Scholar 

  21. R. L. Rao and P. Lakshman, “Segmentation by multiresolution histogram decomposition,” in: Proc. of SPIE. Wavelet Applications in Signal and Image Processing III (July 12–14, 1995, San Diego), San Diego (1995), pp. 766–777.

  22. R. Ya. Kosarevych, M. I. Kobasyar, and B. P. Rusyn, “Multilevel thresholding by clusterization of the set of extrema of histograms of image fragments,” Vidbir Obrob. Inform., Issue 34, 113–119 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Z. Student.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 48, No. 4, pp. 53–60, July–August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosarevych, R.Y., Student, O.Z., Svirs’ka, L.M. et al. Computer analysis of characteristic elements of fractographic images. Mater Sci 48, 474–481 (2013). https://doi.org/10.1007/s11003-013-9527-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-013-9527-0

Keywords

Navigation