Skip to main content
Log in

Correlation of Uniaxial Cyclic Torsion and Tension-Compression for Low-Cycle Fatigue

  • Published:
Materials Science Aims and scope

We analyze the comparison of the fatigue characteristics and, in particular, the coefficients of tensioncompression and cyclic torsion based on the data of available tests performed under low-cycle fatigue in various materials. The correlation of torsion and tension-compression fatigue strength coefficients does not depend on the relative slope of the fatigue diagrams used to describe plastic strains. On the basis of the performed analyses, we conclude that the ratio of the fatigue strength coefficients in tensioncompression varies, in most materials, within the range from 0.5 to \( \frac{1}{1+\nu } \). At the same time, the correlation of the strain-based fatigue coefficients in torsion and in tension-compression strongly depends on the relative slope of the plastic strain-based curves of fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. J. Albinmousa, H. Jahed, and S. Lambert, “Cyclic axial and torsional behaviour of extruded AZ31B magnesium alloy,” Int. J. Fat., 33, 1403–1416 (2011).

    Article  Google Scholar 

  2. ASTM E 739-91: Standard Practice for Statistical Analysis of Linearized Stress–life (S –N ) and Strain life–N ) Fatigue Data, Annual Book of ASTM Standards, Philadelphia, 03.01, 614–620 (1998).

  3. S. Babaei, A. Ghasemi-Ghalebahman, and R. Hajighortbani, “A fatigue model for sensitive materials to non-proportional loadings,” Int. J. Fatigue, 80, 266–277 (2015).

    Article  Google Scholar 

  4. C. Boller and T. Seeger, Materials Data for Cyclic Loading; Parts A, B, C, D, E, Materials Science Monographs, Elsevier (1987), 42D.

    Google Scholar 

  5. X. Chen, K. An, and K. S. Kim, “Low-cycle fatigue of 1Cr–18Ni–9Ti stainless steel and related weld metal under axial, torsional and 90 out-of-phase-loading,” Fatigue Fract. Eng. Mater. Struct., 27, 439–448 (2004).

    Article  Google Scholar 

  6. X. Chen, Q. Gao, and X. F. Sun, “Damage analysis of low-cycle fatigue under non-proportional loading,” Int. J. Fatigue, 16, 221–225 (1994).

    Article  Google Scholar 

  7. X. Chen, S. Xu, and D. Huang, “A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under nonproportional loading,” Fatigue Fract. Eng. Mater. Struct., 22, 679–686 (1999).

    Article  Google Scholar 

  8. O. K. Chopra, Effects of LWR Coolant Environments of Fatigue Design Curves of Austenitic Stainless Steels, U.S. Nuclear Regulatory Commission (1999), p. 55.

  9. V. Doquet and A. Pineau, “Multiaxial low-cycle fatigue behaviour of a mild steel,” in: K. Kussmaul, D. McDiarmid, and D. Socie (editors), Fatigue Under Biaxial and Multiaxial Loading (ESIS-10), Mechanical Eng. Publ., London (1991), pp. 81–101.

    Google Scholar 

  10. A. Fatemi, Fatigue and Deformation Under Proportional and Nonproportional Biaxial Loading, PhD Thesis, University of Iowa (1985).

  11. A. Fatemi and D. F. Socie, “A critical plane approach to multiaxial fatigue damage including out-of-phase loading,” Fatigue Fract. Eng. Mat. Tech., 11, 149–165 (1988).

    Article  Google Scholar 

  12. M. Gladskyi and S. Shukaev, “A new model for low cycle fatigue of metals alloys under non-proportional loading,” Int. J. Fatigue, 32, 1568–1772 (2010).

    Article  Google Scholar 

  13. Y. Gorash and H. Chen, “On creep-fatigue endurance of TIG-dressed weldments using the linear matching method,” Eng. Failure Analysis, 34, 308–323 (2013).

    Article  Google Scholar 

  14. G. R. Halford and J. Morrow, “Low-cycle fatigue in torsion,” Proc. of the American Society for Testing and Materials, 62, 695–709 (1962).

    Google Scholar 

  15. C. Han, X. Chen, and K. S. Kim, “Evaluation of multiaxial fatigue criteria under irregular loading,” Int. J. Fatigue, 24, 913–922 (2002).

    Article  Google Scholar 

  16. D. G. Havard and T. H. Topper, “A criterion for biaxial fatigue of mild steel at low endurance,” in: Proc. First Internat. Conf. on Struct. Mech. in Reactor Tech. (Germany, Berlin, 20–24 Sept. 1971), 6, L5/2, Berlin, Germany (1971), pp. 413–432.

  17. H. Jahed and A. Varvani-Farahani, “Upper and lower fatigue life limits model using energy-based fatigue properties,” Int. J. Fatigue, 28, 467–473 (2006).

    Article  Google Scholar 

  18. S. Kalluri and P. J. Bonacuse, “Cumulative axial and torsional fatigue: an investigation of loaded-type sequencing effects,” in: Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387, West Conshohocken: American Soc. for Test. and Mat., PA (2000), pp. 281–301.

  19. F. A. Kandil, The Determination of Uncertainties in Low Cycle Fatigue Testing, Standards Measurement & Testing Project No. SMT4-CT97-2165, Issue 1 (2000), pp. 1–26.

  20. K. S. Kim, X. Chen, C. Han, and H. W. Lee, “Estimation methods for fatigue properties of steels under axial and torsional loading,” Int. J. Fatigue, 24, 783–793 (2002).

    Article  Google Scholar 

  21. K. S. Kim and J. C. Park, “Shear-strain based multiaxial fatigue parameters applied to variable amplitude loading,” Int. J. Fatigue, 21, 475–483 (1999).

    Article  Google Scholar 

  22. K. S. Kim, J. C. Park, and J. W. Lee, “Multiaxial fatigue under variable amplitude loads,” J. Eng. Mat. Tech., 121, 286–293 (1999).

    Article  Google Scholar 

  23. A. Kurek, A. Kulesa, and T. Łagoda, “Naprężeniowa charakterystyka zmęczeniowa dla zakresu małej i dużej liczby cykli,” in: Symp. “Modelowanie w Mechanice”, Ustroń 2015, Zeszyt Streszczeń, Politechnika Śląska, 54, Gliwice (2015), S. 87–88.

  24. M. Kurek, T. Łagoda, and D. Katzy, “Comparison of fatigue characteristics of some selected materials,” Mater. Test. (Materialprufung), 56, No. 2, 92–95 (2014).

    Article  Google Scholar 

  25. M. Kurek and T. Łagoda, “Estimation of fatigue life of materials with out-of-parallel fatigue characteristics under block loading,” Mat. Sci. Forum, 726, 181–188 (2012).

    Article  Google Scholar 

  26. M. Kurek and T. Łagoda, “Comparison of fatigue characteristics for the same selected structural materials under bending and torsion,” Mat. Sci., 47, No. 3, 334–344 (2011).

    Article  Google Scholar 

  27. B. F. Langer, “Design of pressure vessels for low-cycle fatigue,” J. Basic Eng., 84, 389–402 (1962).

    Article  Google Scholar 

  28. J. Li, Z. P. Hang, Q. Sun, C. W. Li, and R.-S. Li, “A simple relationship between axial and torsional cyclic parameters,” J. Mat. Eng. Performance, 20, No. 7, 1289–1293 (2011).

    Article  Google Scholar 

  29. H. Lin, H. Nayeb-Hashemi, and R. M. Pelloux, “Constitutive relations and fatigue life prediction for anisotropic Al-6061-T6 rods under biaxial proportional loadings,” Int. J. Fatigue, 14, 249–259 (1992).

    Article  Google Scholar 

  30. H. Lin and H. Nayeb-Hashemi, “Effects of material anisotropy on cyclic deformation and biaxial fatigue behavior of Al-6061-T6,” in: D. L. McDowell and R. Ellis (editors), Adv. in Multiaxial Fatigue, ASTM STP 1191, American Soc. for Test. and Mat, Philadelphia (1993), pp. 151–182.

    Google Scholar 

  31. Y. Liu and S. Mahadevan, “Strain-based multiaxial fatigue damage modeling,” Fatigue Fract. Eng. Mat. Struct., 28, 1177–1189 (2005).

    Article  Google Scholar 

  32. R. D. Lohr and E. G. Ellison, “Biaxial high strain fatigue testing of 1Cr–Mo–V steel,” Fatigue Fract. Eng. Mat. Struct., 3, 19–37 (1980).

    Article  Google Scholar 

  33. S. S. Manson, “Inversion of the strain-life and strain-stress relationships for use in metal fatigue analysis,” Fatigue Eng. Mat. Struct., 1, 37–57 (1979).

    Article  Google Scholar 

  34. S. S. Manson, “Fatigue: A complex subject—some simple approximations,” Exper. Mech., 193–226 (1965).

  35. D. V. Nelson and A. Rostami, “Biaxial Fatigue of A533B Pressure Vessel Steel,” Transactions of the ASME, J. Pressure Vessel Tech., 119, 325–331 (1997).

    Article  Google Scholar 

  36. A. Niesłony, A. Kurek, Ch. El Dsoki, and H. Kaufmann, “A study of compatibility between two classical fatigue curve models based on some selected structural materials,” Int. J. Fatigue, 39, 88–94 (2012).

    Article  Google Scholar 

  37. A. Nitta, T. Ogata, and K. Kuwabara, “Fracture mechanics and life assessment under high-strain biaxial cyclic loading of type 304 steel,” Fatigue Fract. Eng. Mat. Struct., 12, 77–92 (1989).

    Article  Google Scholar 

  38. T. Ogata, A. Nitta, and K. Kuwabara, “Biaxial low-cycle fatigue failure of type 304 stainless steel under in-phase and out-of-phase straining conditions,” in: K. Kussmaul, D. McDiarmid, and D. Socie (editors), Fatigue under Biaxial and Multiaxial Loading, ESIS-10, Mech. Eng., London (1991), p. 377–392.

    Google Scholar 

  39. N. Petrone, Metodologie di Progettazione a Fatica per Componenti Soggetti a Sollecitazioni Pluriassiali, PhD Thesis, University of Padova, Italy (1996).

  40. N. Shamsaei, M. Gladskyi, K. Panasovskyi, S. Shukaev, and S. Fatemi, “Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects,” Int. J. Fatigue, 32, 1862–1872 (2010).

    Article  Google Scholar 

  41. N. Shamsaei and A. Fatemi, “Deformation and fatigue behaviors of care-hardened steels in torsion: Experiments and predictions,” Int. J. Fatigue, 31, 1386–1396 (2009).

    Article  Google Scholar 

  42. T. D. Scharton and S. H. Crandall, “Fatigue failure under complex stress histories,” ASME J. Basic Eng., 88, 247–251 (1966).

    Article  Google Scholar 

  43. N. Shirafuji, K. Shimomizuki, M. Sakane, and M. Ohnami, “Tension-torsion multiaxial low-cycle fatigue of Mar-M247LC directionally solidified superalloy at elevated temperature,” J. Eng. Mat. Tech., 120, 57–63 (1998).

    Article  Google Scholar 

  44. D. F. Socie, “Multiaxial fatigue damage models, Transactions of the ASME,” J. Eng. Mat. Tech., 109, 293–298 (1987).

    Article  Google Scholar 

  45. D. F. Socie, P. Kurath, and J. Koch, “A multiaxial fatigue damage parameter, Biaxial and Multiaxial Fatigue,” in: M. W. Brown, K. J. Miller (editors), EGF3, Mech. Eng. Publ., London (1989), pp. 535–550.

    Google Scholar 

  46. J. Szusta and A. Seweryn, “Fatigue damage accumulation modelling in the range of complex low-cycle loadings—The strain approach and its experimental verification on the basis of EN AW-2007 aluminum alloy,” Int. J. Fat., 33, 255–264 (2011).

    Article  Google Scholar 

  47. Y.-Y. Wang and W.-X. Yao, “Evaluation and comparison of several multiaxial fatigue criteria,” Int. J. Fatigue, 26, 17–25 (2004).

    Article  Google Scholar 

  48. H. C. Wu and C. C. Yang, “On the influence of strain-path in multiaxial fatigue failure,” J. Eng. Mat. Tech., 109, № 2, 107–113 (1987).

    Article  Google Scholar 

  49. A. Varvani-Farahani (editor), Advances in Fatigue, Fracture and Damage Assessment of Materials, WitPress (2005).

  50. A. Varvani-Farahani, “A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions,” Int. J. Fat., 22, 295–305 (2000).

    Article  Google Scholar 

  51. S. Y. Zamrik, M. Mirdamadi, and D. C. Davis, “A proposed model for biaxial fatigue analysis using the triaxiality factor concept,” in: D. L. McDowell and R. Ellis (editors), Advances in Multiaxial Fatigue, ASTM STP 1191, American Soc. for Testing and Mater., Philadelphia (1993), pp. 85–106.

    Google Scholar 

  52. S. Y. Zamrik and R. E. Frishmuth, “The effects of out-of-phase biaxial-strain cyclic on low-cycle fatigue,” Exper. Mech., 204–208 (1973).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lagoda.

Additional information

Published in Fizyko-Khimichna Mekhanika Materialiv, Vol. 53, No. 4, pp. 91–98, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagoda, T., Kulesa, A., Kurek, A. et al. Correlation of Uniaxial Cyclic Torsion and Tension-Compression for Low-Cycle Fatigue. Mater Sci 53, 522–531 (2018). https://doi.org/10.1007/s11003-018-0105-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-018-0105-3

Keywords

Navigation