Skip to main content
Log in

Application of Continuous Wavelet Transform in Examining Soil Spatial Variation: A Review

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

An adequate understanding of soil spatial variation as a function of space and scale is necessary in ecological modeling, environmental prediction, precision agriculture, soil quality assessment and natural resources management. Soil spatial variation can be partitioned into frequencies (scale) and positions (location) by the wavelet transform. This review focuses mainly on different applications of the continuous wavelet transform (CWT) for the identification of the scale and location dependence of soil attributes. We discussed both wavelet spectra and wavelet coherence in our analysis of soil spatial variation. Global wavelet spectra, being the sum of wavelet spectra over all spatial locations at a scale, can be used to examine the dominant scale of variation. Furthermore, some variations at a particular scale persist over all locations (termed global features), whereas others are present at only a few locations (localized features). Wavelet spectra can be used to identify both localized and global features. The combination of localized and global features provides a complete picture of the scale-location information of different processes in the field and may provide better guidance in designing efficient management practices. Wavelet coherency partitions the total correlation between two variables into correlations at different scales and locations, while also revealing the scale- and location-specific relationship between those two variables. This relationship may be helpful in developing predictive links between one property and another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biswas A, Si BC, Walley FL (2008) Spatial relationship between δ 15N and elevation in agricultural landscapes. Nonlinear Process Geophys 15(3):397–407

    Article  Google Scholar 

  • Bosch EH, Oliver MA, Webster R (2004) Wavelets and generalization of variogram. Math Geol 36(2):147–186

    Article  Google Scholar 

  • Brillinger DR (2001) Time series: data analysis and theory. Soc Ind Appl Math, Philadelphia

    Google Scholar 

  • Burrough PA (1983) Multiscale sources of spatial variation in soil. 1. The application of fractal concepts to nested levels of soil variation. J Soil Sci 34(3):577–597

    Article  Google Scholar 

  • Chui CK (1992) An introduction to wavelets. Academic Press, New York

    Google Scholar 

  • Corwin DL, Hopmans J, Rooij GH (2006) From field- to landscape-scale vadose zone processes: Scale issues, modeling, and monitoring. Vadose Zone J 5(1):129–139

    Article  Google Scholar 

  • Farge M (1992) Wavelet transform and their applications to turbulence. Annu Rev Fluid Mech 24:395–457

    Article  Google Scholar 

  • Frantziskonis G (2002) Wavelet based analysis of multiscale phenomena: Application of material porosity and identification of dominant scales. Probab Eng Mech 17:349–357

    Article  Google Scholar 

  • Furon AC, Wagner-Riddle C, Smith CR, Warland JS (2008) Wavelet analysis of wintertime and spring thaw CO2 and N2O fluxes from agricultural fields. Agric For Meteorol 148(8–9):1305–1317

    Article  Google Scholar 

  • Gajem YM, Warrick AW, Myers DE (1981) Spatial dependence of physical properties of a Typic Torrifluvent soil. Soil Sci Soc Am J 45(4):709–715

    Article  Google Scholar 

  • Goderya FS (1998) Field scale variations in soil properties for spatially variable control: A review. J Soil Contam 7(2):243–264

    Article  Google Scholar 

  • Graps A (1995) An introduction to wavelets. IEEE Comput Sci Eng 2(2):1–18

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5–6):561–566

    Article  Google Scholar 

  • Heuvelink GBM, Pebesma EJ (1999) Spatial aggregation and soil process modelling. Geoderma 89(1–2):47–65

    Article  Google Scholar 

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford Univ Press, Toronto

    Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York

    Google Scholar 

  • Kachanoski RG, Rolston DE, de Jong E (1985) Spatial and spectral relationships of soil properties and microtopography: I. Density and thickness of A horizon. Soil Sci Soc Am J 49(4):804–812

    Article  Google Scholar 

  • Keitt TH, Fischer J (2006) Detection of scale-specific community dynamics using wavelets. Ecology 87(11):2895–2904

    Article  Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1993) A multicomponent decomposition of spatial rainfall fields: 1. Segregation of large- and small-scale features using wavelet transforms. Water Resour Res 29(8):2515–2532

    Article  Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1997) Wavelet analysis of geophysical applications. Rev Geophys 35(4):385–412

    Article  Google Scholar 

  • Lark RM (2007) Inference about soil variation from the structure of the best wavelet packet basis. Eur J Soil Sci 58(3):822–831

    Article  Google Scholar 

  • Lark RM, Webster R (1999) Analysis and elucidation of soil variation using wavelets. Eur J Soil Sci 50(2):185–206

    Article  Google Scholar 

  • Lark RM, Webster R (2004) Analysing soil variation in two dimensions with the discrete wavelet transform. Eur J Soil Sci 55(4):777–797

    Article  Google Scholar 

  • Lark RM, Milne AE, Addiscott TM, Goulding KWT, Webster R, O’Flaherty S (2004) Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: An analysis using wavelets. Eur J Soil Sci 55(3):611–627

    Article  Google Scholar 

  • Lau KM, Weng H (1995) Climate signal detection using wavelet transform: How to make a time series sing. Bull Am Meteorol Soc 76(12):2391–2402

    Article  Google Scholar 

  • Li BL, Loehle C (1995) Wavelet analysis of multiscale permeabilities in the subsurface. Geophys Res Lett 22(23):3123–3126

    Article  Google Scholar 

  • Lindsay RW, Perceval DB, Rothrock DA (1996) The discrete wavelet transform and the scale analysis of the surface properties of sea ice. IEEE Trans Geosci Remote Sens 34(3):771–787

    Article  Google Scholar 

  • Mallat J (1999) A wavelet tour of signal processing. Academic Press, New York

    Google Scholar 

  • Maraun D, Kurth J, Holschneider M (2007) Nonstationary Gaussian processes in wavelet domain: Synthesis estimation, and significance testing. Phys Rev E 75. doi:10.1103/PhysRevE.75.016707

  • Matheron G (1963) Principles of geostatistics. Econ Geol 51(8):1246–1266

    Article  Google Scholar 

  • McBratney AB, Bishop TFA, Teliatnikov IS (2000) Two soil profile reconstruction techniques. Geoderma 97(3–4):209–221

    Article  Google Scholar 

  • Milne AE, Lark RM (2009) Wavelet transforms applied to irregularly sampled soil data. Math Geosci 41(6):661–678

    Article  Google Scholar 

  • Neupauer RM, Powell KL (2005) A fully anisotropic Morlet wavelet to identify dominant orientations in porous medium. Comput Geosci 31(4):465–471

    Article  Google Scholar 

  • Neupauer RM, Powell KL, Qi X, Lee DH, Villhauer DA (2006) Characterization of permeability anisotropy using wavelet analysis. Water Resour Res 42:W07419. doi:10.1029/2005WR004364

    Article  Google Scholar 

  • Nielsen DR, Biggar JW, Erh KT (1973) Spatial variation of field measured soil water properties. Hilgardia 42(7):214–259

    Google Scholar 

  • Oliver MA (1987) Geostatistics and its application to soil science. Soil Use Manag 3(1):8–20

    Article  Google Scholar 

  • Oliver MA, Webster R (1991) How geostatistics can help you. Soil Use Manag 27(4):206–217

    Article  Google Scholar 

  • Parent AC, Anctil F, Parent LE (2006) Characterization of temporal variability in near surface soil moisture at scales from 1 h to 2 weeks. J Hydrol 325(1–4):56–66

    Article  Google Scholar 

  • Parkin TB (1987) Soil microsites as a source of denitrification variability. Soil Sci Soc Am J 51(5):1194–1199

    Article  Google Scholar 

  • Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Perfect E, Caron J (2002) Spectral analysis of tillage-induced differences in soil spatial variation. Soil Sci Soc Am J 66(5):1587–1595

    Article  Google Scholar 

  • Piňuela JA, Andian D, McInnes KJ, Tarquis AM (2007) Wavelet analysis in a structured clay soil using 2D images. Nonlinear Process Geophys 14(4):425–434

    Article  Google Scholar 

  • Qi X, Neupauer RM (2008) Wavelet analysis of dominant scales of heterogeneous porous media. Water Resour Res 44:W09406. doi:10.1029/2006WR005720

    Article  Google Scholar 

  • Shu Q, Liu Z, Si BC (2008) Characterizing scale and location dependent correlation of water retention parameters with soil physical properties using wavelet techniques. J Environ Qual 37(6):2284–2292

    Article  Google Scholar 

  • Shumway RH, Stoffer DS (2000) Time series analysis and its applications. Springer, New York

    Google Scholar 

  • Si BC (2003) Spatial and scale dependent soil hydraulic properties: A wavelet approach. In: Pachepsky Y et al (eds) Scaling method in soil physics. CRC Press, New York, pp 163–178

    Chapter  Google Scholar 

  • Si BC (2008) Spatial scaling analysis of soil physical properties: A review of spectral and wavelet methods. Vadose Zone J 7(2):547–562

    Article  Google Scholar 

  • Si BC, Farrell RE (2004) Scale dependent relationships between wheat yield and topographic indices: A wavelet approach. Soil Sci Soc Am J 68(2):577–588

    Article  Google Scholar 

  • Si BC, Zeleke TB (2005) Wavelet coherency analysis to relate saturated hydraulic properties to soil physical properties. Water Resour Res 41:W11424. doi:10.1029/2005WR004118

    Article  Google Scholar 

  • Si BC, Kachanoski RG, Reynolds WD (2007) Analysis of soil variation. In: Gregorich EG (ed) Soil sampling and methods of analysis. CRC Press, New York, pp 1163–1191

    Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO-monsoon system. J Climate 12:2679–2690

    Article  Google Scholar 

  • Trangmar BB, Yost RS, Uehara G (1985) Application of geostatistics to spatial studies of soil properties. Adv Agron 38:45–94

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Van Wambeke A, Dulal R (1978) In: Diversity of soils in the tropics. Am Soc Agron Spec Publ 34:13–28

  • Van Wesenbeeck IJ, Kachanoski RG, Rolston DE (1988) Temporal persistence of spatial patterns of soil-water content in the tilled layer under a corn crop. Soil Sci Soc Am J 52(4):934–941

    Article  Google Scholar 

  • Viera SR, Hatfield JL, Nielsen DR, Biggar JW (1982) Geostatistical theory and application to variation of some agronomical properties. Hilgardia 51:1–75

    Google Scholar 

  • Watkins L, Neupauer RM, Compo GP (2009) Wavelet analysis and filtering to identify dominant orientations of permeability anisotropy. Math Geosci 41(6):643–659

    Article  Google Scholar 

  • Webster R (1977) Spectral analysis of gilgai soil. Aust J Soil Res 15(3):191–204

    Article  Google Scholar 

  • Western AW, Grayson RB, Blöschl G (2002) Scaling of soil moisture: A hydrologic perspective. Annu Rev Earth Planet Sci 30:149–180

    Article  Google Scholar 

  • Yates TT, Si BC, Farrell RE, Pennock DJ (2006a) Probability distribution and spatial dependence of nitrous oxide emission: Temporal change in hummocky terrain. Soil Sci Soc Am J 70(3):753–762

    Article  Google Scholar 

  • Yates TT, Si BC, Farrell RE, Pennock DJ (2006b) Wavelet spectra of nitrous oxide emission from hummocky terrain during spring snowmelt. Soil Sci Soc Am J 70(4):1110–1120

    Article  Google Scholar 

  • Yates TT, Si BC, Farrell RE, Pennock DJ (2007) Time, location, and scale dependence of soil nitrous oxide emission, water, and temperature using wavelet coherency analysis. J Geophys Res 112:D09104. doi:10.1029/2006JD007662

    Article  Google Scholar 

  • Zeleke TB, Si BC (2007) Wavelet based multifractal analysis of field scale variation in soil water retention. Water Resour Res 43(7):W07446. doi:10.1029/2006WR004957

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Cheng Si.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, A., Si, B.C. Application of Continuous Wavelet Transform in Examining Soil Spatial Variation: A Review. Math Geosci 43, 379–396 (2011). https://doi.org/10.1007/s11004-011-9318-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-011-9318-9

Keywords

Navigation