Skip to main content
Log in

An Overview of Approaches to the Analysis and Modelling of Multivariate Geostatistical Data

  • Special Issue
  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

We give an overview of existing approaches for the analysis of geostatistical multivariate data, namely spatially indexed multivariate data where the indexing is continuous across space. These approaches are divided into two classes: factor models and spatial random field models. Factor models may be further subdivided into a descriptive sub-class, where the factors are directly obtainable as linear combinations of the manifest variables, and an inferential subclass, where the factors are latent quantities that have to be estimated from the data. Spatial random field models include a variety of different types, the most prominent being the proportional correlation model, the linear coregionalisation model, and several convolution-based models. We provide an overview of the different approaches, and draw out some connections between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abellan JJ, Fecht D, Best N, Richardson S, Briggs DJ (2007) Bayesian analysis of the multivariate geographical distribution of the socio-economic environment in England. EnvironMetrics 18:745–758

    Article  Google Scholar 

  • Apanasovich TV, Genton MG (2010) Cross-covariance functions for multivariate random fields based on latent dimensions. Biometrika 97:15–30

    Article  Google Scholar 

  • Bailey TC, Krzanowski WJ (2000) Extensions to spatial factor methods with an illustration in geochemistry. Math Geol 32:657–682

    Article  Google Scholar 

  • Bailey TC, Barcellos C, Krzanowski WJ (2005) Use of spatial factors in the analysis of heavy metals in sediments in a Brazilian coastal region. EnvironMetrics 16:563–572

    Article  Google Scholar 

  • Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman & Hall/CRC Press, Boca Raton

    Google Scholar 

  • Banerjee S, Gelfand A, Finley A, Sang H (2008) Gaussian predictive process models for large spatial datasets. J R Stat Soc, Ser B, Stat Methodol 70:825–848

    Article  Google Scholar 

  • Biggeri A, Bonannini M, Catelan D, Divino F, Dreassi E, Lagazio C (2005) Bayesian ecological regression with latent factors: atmospheric pollutants emissions and mortality for lung cancer. Environ Ecol Stat 12:397–409

    Article  Google Scholar 

  • Boucher A, Dimitrakopoulos R (2009) Block simulation of multiple correlated variables. Math Geosci 41:215–237

    Article  Google Scholar 

  • Bucci G, Vendramin GG (2000) Delineation of genetic zones in the European Norway spruce natural range: preliminary evidence. Mol Ecol 9:923–934

    Article  Google Scholar 

  • Bucci G, Gonzalez-Martinez SC, LeProvost G, Plomion C, Ribeiro MM, Sebastiani F, Alia R, Vendramin GG (2007) Range-wide phylogeography and gene zones in Pinus pinaster Ait revealed by chloroplast microsatellite markers. Mol Ecol 16:2137–2153

    Article  Google Scholar 

  • Calder CA (2007) Dynamic factor process convolution models for multivariate space–time data with application to air quality assessment. Environ Ecol Stat 14:229–247

    Article  Google Scholar 

  • Calder CA (2008) A dynamic process convolution approach to modeling ambient particulate matter concentrations. EnvironMetrics 19:39–48

    Article  Google Scholar 

  • Christensen WF, Amemiya Y (2001) Generalized shifted-factor analysis method for multivariate geo-referenced data. Math Geol 33:801–824

    Article  Google Scholar 

  • Christensen WF, Amemiya Y (2002) Latent variable analysis of multivariate spatial data. J Am Stat Assoc 97:302–317

    Article  Google Scholar 

  • Christensen WF, Amemiya Y (2003) Modeling and prediction for multivariate spatial factor analysis. J Stat Plan Inference 115:543–564

    Article  Google Scholar 

  • Christensen WE, Schauer JJ, Lingwall JW (2006) Iterated confirmatory factor analysis for pollution source apportionment. EnvironMetrics 17:663–681

    Article  Google Scholar 

  • Clements ACA, Garba A, Sacko M, Touré S, Dembelé R, Landouré A et al (2008) Mapping the probability of schistosomiasis and associated uncertainty, West Africa. Emerg Infect Dis 14:1629–1632

    Article  Google Scholar 

  • Congdon P (2010) Estimating prevalence of coronary heart disease for small areas using collateral indicators of morbidity. Int J Environ Res Public Health 7:164–177

    Article  Google Scholar 

  • Cook D, Cressie N, Majure J, Symanzik J (1994) Some dynamic graphics for spatial data (with multiple attributes) in GIS. In: Dutter R, Grossman W (eds) Proceedings in computational statistics, 11th symposium, Vienna, Austria, 1994. Physica-Verlag, Heidelberg, pp 105–119

    Google Scholar 

  • Cressie NA (1993) Statistics for spatial data, 2nd edn. Wiley, New York

    Google Scholar 

  • Desbarats AJ, Dimitrakopoulos R (2000) Pore-size distributions using min/max autocorrelation factors. Math Geol 32:919–992

    Article  Google Scholar 

  • Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics. J R Stat Soc, Ser C, Appl Stat 47:299–326

    Article  Google Scholar 

  • Dray S, Said S, Debias F (2008) Spatial ordination of vegetation data using a generalization of Wartenberg’s multivariate spatial correlation. J Veg Sci 19:45–56

    Article  Google Scholar 

  • Eickhoff JC, Amemiya Y (2003) Generalized linear latent variable modeling for multi-group studies. Technical Report RC22981, Thomas J. Watson Research Center, IBM, Yorktown Heights, NY

  • Fan SH, Burstyn I, Senthilselvan A (2010) Spatiotemporal modeling of ambient sulfur dioxide concentrations in rural Western Canada. Environ Model Assess 15:137–146

    Article  Google Scholar 

  • Finley AO, Sang H, Banerjee S, Gelfand AE (2009) Improving the performance of predictive process modeling for large datasets. Comput Stat Data Anal 53:2873–2884

    Article  Google Scholar 

  • Flury B (1988) Common principal components, and related multivariate models. Wiley, New York

    Google Scholar 

  • Fuentes M (2002) Spectral methods for nonstationary spatial processes. Biometrika 89:197–210

    Article  Google Scholar 

  • Fuentes M (2007) Approximate likelihood for large irregularly spaced spatial data. J Am Stat Assoc 102:321–331

    Article  Google Scholar 

  • Fuller W (1987) Measurement error models. Wiley, New York

    Book  Google Scholar 

  • Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimensions. Q J R Meteorol Soc 125:723–757

    Article  Google Scholar 

  • Gelfand AE, Vounatsou P (2003) Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4:11–25

    Article  Google Scholar 

  • Gelfand AE, Schmidt AM, Banerjee S, Sirmans CF (2004) Nonstationary multivariate process modeling through spatially varying coregionalization. Test 13:150

    Article  Google Scholar 

  • Gneiting T (2002) Nonseparable, stationary covariance functions for space-time data. J Am Stat Assoc 97:590–601

    Article  Google Scholar 

  • Goovaerts P (1993) Spatial orthogonality of the principal components computed from coregionalised variables. Math Geol 25:281–302

    Article  Google Scholar 

  • Goulard M, Voltz M (1992) Linear coregionalization model: tools for estimation and choice of multivariate variograms. Math Geol 24:269–286

    Article  Google Scholar 

  • Grimes DIF, Pardo-Iguzquiza E (2010) Geostatistical analysis of rainfall. Geogr Anal 42:136–160

    Article  Google Scholar 

  • Grunsky EC (2010) The interpretation of geochemical survey data. Geochem, Explor Environ Anal 10:27–74

    Article  Google Scholar 

  • Grunsky E, Agterberg F (1992) Spatial relationships of multivariate data. Math Geol 24:731–758

    Article  Google Scholar 

  • Haskard KA, Lark RM (2009) Modelling non-stationary variance of soil properties by tempering an empirical spectrum. Geoderma 153:18–28

    Article  Google Scholar 

  • Higdon D (1998) A process-convolution approach to modeling temperatures in the North Atlantic Ocean. Environ Ecol Stat 5:173–190

    Article  Google Scholar 

  • Higdon D (2002) Space and space-time modeling using process convolutions. In: Anderson C, Barnett V, Chatwin PC, El-Shaarawi AH (eds) Quantitative methods for current environmental issues. Springer, New York, pp 37–56

    Chapter  Google Scholar 

  • Higdon D, Swall J, Kern J (1999) Non-stationary spatial modeling. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics, vol 6. Oxford University Press, Oxford, pp 761–768

    Google Scholar 

  • Hossain M, Laditka JN (2009) Using hospitalization for ambulatory care sensitive conditions to measure access to primary health care: an application of spatial structural equation modeling. Int J Health Geogr 8:51

    Article  Google Scholar 

  • Jacob BG, Burkett-Cadena ND, Luvall JC, Parcak SH, McClure CJ, Estep LK, Hill GE, Cupp EW, Novak RJ, Unnasch TR (2010) Developing GIS-based eastern equine encephalitis vector-host models in Tuskegee, Alabama. Int J Health Geogr 9:12

    Article  Google Scholar 

  • Krzanowski WJ (2000) Principles of multivariate analysis: a user’s perspective. Oxford University Press, Oxford (rev ed)

    Google Scholar 

  • Krzanowski WJ, Bailey TC (2007) Extraction of spatial features using factor methods illustrated on stream sediment data. Math Geol 39:69–85

    Article  Google Scholar 

  • Larocque G, Dutilleul P, Pelletier B, Fyles JW (2007) Characterization and quantification of uncertainty in coregionalization analysis. Math Geol 39:263–288

    Article  Google Scholar 

  • Leonte D, Nott DJ (2006) Bayesian spatial modelling of gamma ray count data. Math Geol 38:135–154

    Article  Google Scholar 

  • Li B, Genton MG, Sherman M (2007) A nonparametric assessment of properties of space-time covariance functions. J Am Stat Assoc 102:736–744

    Article  Google Scholar 

  • Li B, Genton MG, Sherman M (2008) Testing the covariance structure of multivariate random fields. Biometrika 95:813–829

    Article  Google Scholar 

  • Lindenmayer JP, Khan A, Iskander A, Abad MT, Parker B (2007) A randomized controlled trial of olanzapine versus haloperidol in the treatment of primary negative symptoms and neurocognitive deficits in schizophrenia. J Clin Psychiat 368–379

  • Loranty MM, Mackay DS, Ewers BE, Adelman JD, Kruger EL (2008) Environmental drivers of spatial variation in whole-tree transpiration in an aspen-dominated upland-to-wetland forest gradient. Water Resour Res 44(2):W02441

    Article  Google Scholar 

  • Majumdar A, Gelfand AE (2007) Multivariate spatial modeling for geostatistical data using convolved covariance functions. Math Geol 39:225–245

    Article  Google Scholar 

  • Majumdar A, Paul D, Bautista D (2009) A generalized convolution model for multivariate nonstationary spatial processes. Dept. Mathematics and Statistics, Arizona State University, Tempe, USA

  • Majure JJ, Cressie N (1997) Dynamic graphics for exploring spatial dependence in multivariate spatial data. J Geogr Syst 4:131–158

    Google Scholar 

  • Mardia KV, Goodall CR (1993) Spatial-temporal analysis of multivariate environmental monitoring data. In: Patil GP, Rao CR (eds) Multivariate environmental statistics. Amsterdam, Elsevier, pp 347–386

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, New York

    Google Scholar 

  • Oud JHL, Folmer H (2008) A structural equation approach to models with spatial dependence. Geogr Anal 40:152–166

    Article  Google Scholar 

  • Paulitz TC, Zhang H, Cook RJ (2003) Spatial distribution of Rhizoctonia oryzae and rhizoctonia root rot in direct-seeded cereals. Can J Plant Pathol 25:295–303

    Article  Google Scholar 

  • Pelletier B, Dutilleul P, Larocque G, Fyles JW (2009) Coregionalization analysis with a drift for multi-scale assessment of spatial relationships between ecological variables 1 and 2. Environ Ecol Stat 16:439–494

    Article  Google Scholar 

  • Raso G, Vounatsou P, Gosoniu L, Tanner M, N’goran EK, Utzinger J (2006) Risk factors and spatial patterns of hookworm infection among schoolchildren in a rural area of western Cote d’ Ivoire. Int J Parasitol 36:201–210

    Article  Google Scholar 

  • Reich BJ, Fuentes M, Burke J (2009) Analysis of the effects of ultrafine particulate matter while accounting for human exposure. EnvironMetrics 20:131–146

    Article  Google Scholar 

  • Royle JA, Berliner LM (1999) A hierarchical approach to multivariate spatial modeling and prediction. J Agric Biol Environ Stat 4:29–56

    Article  Google Scholar 

  • Royle JA, Wikle CK (2005) Efficient statistical mapping of avian count data. Environ Ecol Stat 12:225–243

    Article  Google Scholar 

  • Sahu SK, Challenor P (2008) A space-time model for joint modeling of ocean temperature and salinity levels as measured by Argo floats. EnvironMetrics 19:509–528

    Article  Google Scholar 

  • Saltyte-Benth J, Ducinskas K (2005) Linear discriminant analysis of multivariate spatial-temporal regressions. Scand J Stat 32:281–294

    Article  Google Scholar 

  • Seiter K, Hensen C, Schröter E, Zabel M (2004) Organic carbon content in surface sediments—defining regional provinces. Deep-Sea Res, Part 1, Oceanogr Res Pap 51:2001–2026

    Article  Google Scholar 

  • Sicard E, Sabatier R, Niel H, Cadier E (2002) A new approach in space-time analysis of multivariate hydrological data: application to Brazil’s Nordeste region rainfall. Water Resour Res 38:1319

    Article  Google Scholar 

  • Switzer P (1985) Min/Max autocorrelation factors for multivariate spatial imagery. In: Comp sci stat, proceedings of the 16th symposium on the interface, pp 13–16

    Google Scholar 

  • Thogmartin WE, Sauer JR, Knutson MG (2004) A hierarchical spatial model of avian abundance with application to Cerulean Warblers. Ecol Appl 14:1766–1779

    Article  Google Scholar 

  • Thogmartin WE, Knutson MG, Sauer JR (2006) Predicting regional abundance of rare grassland birds with a hierarchical spatial count model. Condor 108:25–46

    Article  Google Scholar 

  • Thompson JA, Brown SE, Riddle WT, Seahorn JC, Cohen ND (2005) Use of a Bayesian risk-mapping technique to estimate spatial risks for mare reproductive loss syndrome in Kentucky. Am J Vet Res 66:17–20

    Article  Google Scholar 

  • Vargas-Guzmán JA (2008) Transitive geostatistics for stepwise modeling across boundaries between rock regions. Math Geosci 40:861–873

    Article  Google Scholar 

  • Vargas-Guzmán JA, Warrick AW, Myers DE (2002) Coregionalization by linear combination of nonorthogonal components. Math Geol 34:405–419

    Article  Google Scholar 

  • Ver Hoef J, Barry R (1998) Constructing and fitting models for cokriging and multivariable spatial prediction. J Stat Plan Inference 69:275–294

    Article  Google Scholar 

  • Ver Hoef J, Cressie N, Barry R (2004) Flexible spatial models for kriging and cokriging using moving averages and the Fast Fourier Transform. J Comput Graph Stat 13:265–282

    Article  Google Scholar 

  • Vounatsou P, Raso G, Tanner M, N’goran EK, Utzinger J (2009) Bayesian geostatistical modelling for mapping schistosomiasis transmission. J Parasitol 136:1695–1705

    Article  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics: an introduction with applications, 2nd edn. Springer, Berlin

    Google Scholar 

  • Wang F, Wall MM (2003) Generalised common spatial factor models. Biostatistics 4:569–582

    Article  Google Scholar 

  • Wikle CK, Cressie N (1999) A dimension-reduced approach to space-time Kalman filtering. Biometrika 86:815–829

    Article  Google Scholar 

  • Wikle CK, Berliner LM, Cressie N (1998) Hierarchical Bayesian space-time models. Environ Ecol Stat 5:117–154

    Article  Google Scholar 

  • Wu KS, Huo X, Zhu GH (2008) Relationships between esophageal cancer and spatial environment factors by using Geographic Information System. Sci Total Environ 393:219–225

    Article  Google Scholar 

  • Yu HL, Chiang CT, Lin SD, Chang TK (2010) Spatiotemporal analysis and mapping of oral cancer risk in Changhua County (Taiwan): an application of generalized Bayesian maximum entropy method. Ann Epidemiol 20:99–107

    Article  Google Scholar 

  • Zhang H (2007) Maximum-likelihood estimation for multivariate spatial linear coregionalization models. EnvironMetrics 18:125–139

    Article  Google Scholar 

  • Zhu J, Eickhoff JC, Yan P (2005) Generalized linear latent variable models for repeated measures of spatially correlated multivariate data. Biometrics 61:674–683

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojtek J. Krzanowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, T.C., Krzanowski, W.J. An Overview of Approaches to the Analysis and Modelling of Multivariate Geostatistical Data. Math Geosci 44, 381–393 (2012). https://doi.org/10.1007/s11004-011-9360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-011-9360-7

Keywords

Navigation