Skip to main content
Log in

Projection Pursuit Multivariate Transform

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Transforming complex multivariate geological data to a Gaussian distribution is an important and challenging problem in geostatistics. A variety of transforms are available for this goal, but struggle with high dimensional data sets. Projection pursuit density estimation (PPDE) is a well-established nonparametric method for estimating the joint density of multivariate data. A central component of the PPDE algorithm transforms the original data toward a multivariate Gaussian distribution. The PPDE approach is modified to map complex data to a multivariate Gaussian distribution within a geostatistical modeling context. Traditional modeling may then take place on the transformed Gaussian data, with a back-transform used to return simulated variables to their original units. This approach is referred to as the projection pursuit multivariate transform (PPMT). The PPMT shows the potential to be an effective means for modeling high dimensional and complex geologic data. The PPMT algorithm is developed before discussing considerations and limitations. A case study compares modeling results against more common techniques to demonstrate the value and place of the PPMT within geostatistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Almeida AS, Journel AG (1994) Joint simulation of multiple-variables with a Markov-type coregionalization model. Math Geol 26:565–588. doi:10.1007/Bf02089242

    Article  Google Scholar 

  • Babak O, Deutsch CV (2009) An intrinsic model of coregionalization that solves variance inflation in collocated cokriging. Comput Geosci 35:603–614

    Article  Google Scholar 

  • Barnett RM, Deutsch CV (2012) Practical implementation of non-linear transforms for modeling geometallurgical variables. In: Abrahamsen P, Hauge R, Kolbjornsen O (eds) Geostatistics Oslo 2012. Springer, Netherlands

    Google Scholar 

  • Bellman RE (1957) Dynamic programming. Princeton University Press, New Jersey

    Google Scholar 

  • Bliss C (1934) The method of probits. Science 79:39

    Article  Google Scholar 

  • Desbarats AJ, Dimitrakopoulos R (2000) Geostatistical simulation of regionalized poresize distributions using min/max autocorrelations factors. Math Geol 32:919–942

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: a geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Friedman JH (1987) Exploratory projection pursuit. J Am Stat Assoc 82:249–266

    Article  Google Scholar 

  • Friedman JH, Tukey JW (1974) A projection pursuit algorithm for exploratory data analysis. IEEE Trans Comput C-23:881–890

    Article  Google Scholar 

  • Goovaerts P (1993) Spatial orthogonality of the principal components computed from coregionalized variables. Math Geol 25:281–302

    Article  Google Scholar 

  • Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441

    Article  Google Scholar 

  • Huber PJ (1985) Projection pursuit. Ann Stat 13:435–475

    Article  Google Scholar 

  • Hwang J, Lay S, Lippman A (1994) Nonparametric multivariate density estimation: a comparative study. IEEE Trans Signal Process 42:2795–2810

    Article  Google Scholar 

  • Isaaks EH (1990) The application of Monte Carlo methods to the analysis of spatially correlated data. PhD dissertation, Stanford University, Stanford, USA

  • Johnson RJ, Wichern DW (1998) Applied multivariate statistical analysis, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Johnston LP, Kramer MA (2011) Probability density estimation using elliptic basis functions. AIChE J 40:1639–1649

    Article  Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London

    Google Scholar 

  • Leuangthong O, Deutsch CV (2003) Stepwise conditional transformation for simulation of multiple variables. Math Geol 35:155–173

    Article  Google Scholar 

  • Little RJ, Rubin DB (2002) Statistical analysis with missing data, 2nd edn. Wiley, New Jersey

    Google Scholar 

  • Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Netherlands

    Google Scholar 

  • Martin-Fernandez JA, Barcelo-Vidal C, Pawlowsky-Glahn V (2003) Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math Geol 35:253–278

    Article  Google Scholar 

  • Mueller UA, Ferreira J (2012) The U-WEDGE transformation method for multivariate geostatistical simulation. Math Geosci 44:427–448

    Article  Google Scholar 

  • Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076

    Article  Google Scholar 

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23:470–472

    Article  Google Scholar 

  • Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:832–837

    Article  Google Scholar 

  • Scott DW (1992) Multivariate density estimation: theory, practice, and visualization. Wiley, New York

    Book  Google Scholar 

  • Switzer P, Green AA (1984) Min/Max autocorrelation factors for multivariate spatial imaging. Department of Statistics technical report 6, Stanford University, Stanford, USA

  • Verly GW (1984) Estimation of spatial point and block distributions: the multi-Gaussian model. PhD dissertation, Stanford University, Stanford, USA

  • Zhu H, Journel AG (1993) Formatting and integrating soft data: stochastic imaging via the Markov–Bayes algorithm. In: Soares A (ed) Geostatistics Troia 1992. Springer, Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan M. Barnett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, R.M., Manchuk, J.G. & Deutsch, C.V. Projection Pursuit Multivariate Transform. Math Geosci 46, 337–359 (2014). https://doi.org/10.1007/s11004-013-9497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-013-9497-7

Keywords

Navigation