Skip to main content
Log in

Propagator of a Charged Particle with a Spin in Uniform Magnetic and Perpendicular Electric Fields

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct an explicit solution of the Cauchy initial value problem for the time-dependent Schrödinger equation for a charged particle with a spin moving in a uniform magnetic field and a perpendicular electric field varying with time. The corresponding Green function (propagator) is given in terms of elementary functions and certain integrals of the fields with a characteristic function, which should be found as an analytic or numerical solution of the equation of motion for the classical oscillator with a time-dependent frequency. We discuss a particular solution of a related nonlinear Schrödinger equation and some special and limiting cases are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews G.E., Askey R.A., Roy R.: Special Functions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Arrighini G.P., Durante N.L.: More on the quantum propagator of a particle in a linear potential. Am. J. Phys. 64(8), 1036–1041 (1996)

    Article  ADS  Google Scholar 

  3. Banica, V., Vega, L.: On the Dirac delta as initial condition for nonlinear Schrödinger equations. arXiv:0706.0819v1 [math.AP] 6 June (2007)

  4. Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields. 3rd edn. Wiley (1980)

  5. Beauregard L.A.: Propagators in nonrelativistic quantum mechanics. Am. J. Phys. 34, 324–332 (1966)

    Article  ADS  Google Scholar 

  6. Bettencourt L.M.A., Cintrón-Arias A., Kaiser D.I., Castillo-Chávez C.: The power of a good idea: quantitative modeling of the spread of ideas from epidemiological models. Phisica A 364, 513–536 (2006)

    Article  ADS  Google Scholar 

  7. Brown L.S., Zhang Y.: Path integral for the motion of a particle in a linear potential. Am. J. Phys. 62(9), 806–808 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  8. Feynman R.P. The Principle of Least Action in Quantum Mechanics. Ph.D. thesis, Princeton University, 1942; reprinted In: Brown, L.M. (ed.) Feynman’s Thesis–A New Approach to Quantum Theory, pp. 1–69 World Scientific Publishers, Singapore (2005)

  9. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20(2), 367–387 (1948) reprinted In: Brown, L.M. (ed.) Feynman’s Thesis–A New Approach to Quantum Theory, pp. 71–112. World Scientific Publishers, Singapore (2005)

    Google Scholar 

  10. Feynman R.P.: The theory of positrons. Phys. Rev. 76(6), 749–759 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Feynman R.P.: Space-time approach to quantum electrodynamics. Phys. Rev. 76(6), 769–789 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Feynman R.P., Hibbs A.R.: Quantum Mechanics and Path Integrals. McGraw–Hill, New York (1965)

    MATH  Google Scholar 

  13. Flügge S.: Practical Quantum Mechanics. Springer, Berlin (1999)

    MATH  Google Scholar 

  14. Gottfried K., Yan T.-M.: Quantum Mechanics: Fundamentals, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  15. Haaheim D.R., Stein F.M.: Methods of solution of the Riccati differential equation. Math. Magazine 42(2), 233–240 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Holstein B.R.: The linear potential propagator. Am. J. Phys. 65(5), 414–418 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  17. Holstein B.R.: The harmonic oscillator propagator. Am. J. Phys. 67(7), 583–589 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  18. Howland J.: Scattering theory for Hamiltonians periodic in time. Indiana Univ. Math. J. 28(3), 471–494 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jackson J.D.: Classical Electrodynamics. 2nd edn. John Wiley, New York (1975)

    MATH  Google Scholar 

  20. Jafaev, D.R.: Wave operators for the Schrödinger equation. Teoret. Mat. Fiz. 45(2): 224–234 (1980, in Russian)

    Google Scholar 

  21. Kenig C.E., Ponce G., Vega L.: On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106(3), 617–633 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Landau L.D., Lifshitz E.M.: Quantum Mechanics: Nonrelativistic Theory. Pergamon Press, Oxford (1977)

    Google Scholar 

  23. Lopez, R.M., Suslov, S.K.: The Cauchy problem for a forced harmonic oscillator. arXiv:0707.1902v8 [math-ph], 27 December 2007

  24. Maslov V.P., Fedoriuk M.V.: Semiclassical Approximation in Quantum Mechanics. Reidel, Dordrecht (1981)

    Google Scholar 

  25. Meiler, M., Cordero–Soto, R., Suslov, S.K.: Solution of the Cauchy problem for a time-dependent Schrödinger equation. arXiv: 0711.0559v4 [math-ph], 5 December 2007

  26. Merzbacher E.: Quantum Mechanics, 3rd edn. Wiley, New York (1998)

    Google Scholar 

  27. Messia A.: Quantum Mechanics. Dover Publications, New York (1999)

    Google Scholar 

  28. Naibo V., Stefanov A.: On some Schrödinger and wave equations with time dependent potentials. Math. Ann. 334(2), 325–338 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nardone P.: Heisenberg picture in quantum mechanics and linear evolutionary systems. Am. J. Phys. 61(3), 232–237 (1993)

    Article  ADS  Google Scholar 

  30. Nikiforov A.F., Suslov S.K., Uvarov V.B.: Classical Orthogonal Polynomials of a Discrete Variable. Springer, Berlin (1991)

    MATH  Google Scholar 

  31. Nikiforov A.F., Uvarov V.B.: Special Functions of Mathematical Physics. Birkhäuser, Basel, Boston (1988)

    MATH  Google Scholar 

  32. Paliouras J.D., Meadows D.S.: Complex Variables for Scientists and Engineers, 2nd edn. Macmillan Publishing Company, New York (1990)

    MATH  Google Scholar 

  33. Rainville E.D.: Special Functions. The Macmillan Company, New York (1960)

    MATH  Google Scholar 

  34. Rainville E.D.: Intermediate Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  35. Pérez-Garcia V.M., Torres P., Montesinos G.D.: The method of moments for nonlinear Schrödinger equations: theory and applications. SIAM J. Appl. Math. 67(4), 990–1015 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Robinett R.W.: Quantum mechanical time-development operator for the uniformly accelerated particle. Am. J. Phys. 64(6), 803–808 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  37. Rodnianski I., Schlag W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potential. Invent. Math. 155(3), 451–513 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Rozanova O.S.: Hydrodynamic approach to constructing solutions of nonlinear Schrödinger equations in the critical case. Proc. Am. Math. Soc. 133, 2347–2358 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schlag, W.: Dispersive estimates for Schrödinger operators: a survay. arXiv: math/0501037v3 [math.AP], 10 January 2005

  40. Staffilani G., Tataru D.: Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Commun. Partial Differ. Eqn. 27(5,6), 1337–1372 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Stein E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  42. Styer, D.: Additions and Corrections to Feynman and Hibbs. See an updated version on the author’s web site: http://www.oberlin.edu/physics/dstyer/FeynmanHibbs/errors.pdf

  43. Suslov, S.K., Trey, B.: The Hahn polynomials in the nonrelativistic and relativistic Coulomb problems. J. Math. Phys. 49(1), published on line 22 January 2008. http://link.aip.org/link/?JMP/49/012104 (2008)

  44. Thomber N.S., Taylor E.F.: Propagator for the simple harmonic oscillator. Am. J. Phys. 66(11), 1022–1024 (1998)

    Article  ADS  Google Scholar 

  45. Watson G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

  46. Yajima K.: Scattering theory for Schrödinger equations with potentials periodic in time. J. Math. Soc. Japan 29(4), 729–743 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei K. Suslov.

Additional information

We dedicate this paper to the memory of Professor Basil Nicolaenko for his significant contributions to the area of nonlinear partial differential equations, applied mathematics, and related topics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordero-Soto, R., Lopez, R.M., Suazo, E. et al. Propagator of a Charged Particle with a Spin in Uniform Magnetic and Perpendicular Electric Fields. Lett Math Phys 84, 159–178 (2008). https://doi.org/10.1007/s11005-008-0239-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-008-0239-6

Mathematics Subject Classification (2000)

Keywords

Navigation