Skip to main content
Log in

On Quantum No-Broadcasting

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We address the issue of one-side local broadcasting for correlations in a quantum bipartite state, and conjecture that the correlations can be broadcast if and only if they are classical–quantum, or equivalently, the quantum discord, as defined by Ollivier and Zurek (Phys Rev Lett 88:017901, 2002), vanishes. We prove this conjecture when the reduced state is maximally mixed and further provide various plausible arguments supporting this conjecture. Moreover, we demonstrate that the conjecture implies the following two elegant and fundamental no-broadcasting theorems: (1) The original no-broadcasting theorem by Barnum et al. (Phys Rev Lett 76:2818, 1996), which states that a family of quantum states can be broadcast if and only if the quantum states commute. (2) The no-local-broadcasting theorem for quantum correlations by Piani et al. (Phys Rev Lett 100:090502, 2008), which states that the correlations in a single bipartite state can be locally broadcast if and only if they are classical. The results provide an informational interpretation for classical–quantum states from an operational perspective and shed new lights on the intrinsic relation between non-commutativity and quantumness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnum H., Barrett J., Leifer M., Wilce A.: Generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501 (2007)

    Article  ADS  Google Scholar 

  2. Barnum H., Caves C.M., Fuchs C.A., Jozsa R., Schumacher B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818–2821 (1996)

    Article  ADS  Google Scholar 

  3. Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  4. Biham E., Brassard G., Kenigsberg D., Mor T.: Quantum computing without entanglement. Theoret. Comput. Sci. 320, 15–33 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Braunstein S.L., Caves C.M., Jozsa R., Linden N., Popescu S., Schack R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054–1057 (1999)

    Article  ADS  Google Scholar 

  6. Christandl M., Winter A.: “Squashed entanglement”—an additive entanglement measure. J. Math. Phys. 45, 829–840 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Datta A., Flammia S.T., Caves C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  8. Datta A., Vidal G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  9. Devetak I., Winter A.: Distilling common randomness from bipartite quantum states. IEEE Trans. Inf. Theory 50, 3183–3196 (2004)

    Article  MathSciNet  Google Scholar 

  10. Dieks D.: Communications by EPR devices. Phys. Lett. A 92, 271–272 (1982)

    Article  ADS  Google Scholar 

  11. Groisman B., Popescu S., Winter A.: Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  12. Hayden P., Jozsa R., Petz D., Winter A.: Structure of states which satisfy strong subadditivity of quantum entropy with equality. Commun. Math. Phys. 246, 359–374 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Henderson L., Vedral V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6905 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Horodecki M.: Entanglement measures. Quantum Inf. Comput. 1, 3–26 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Kalev A., Hen I.: No-broadcasting theorem and its classical counterpart. Phys. Rev. Lett. 100, 210502 (2008)

    Article  ADS  Google Scholar 

  16. Li N., Luo S.: Total versus quantum correlations in quantum states. Phys. Rev. A 76, 032327 (2007)

    Article  ADS  Google Scholar 

  17. Li N., Luo S.: Classical states versus separable states. Phys. Rev. A 78, 024303 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. Lindblad G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147–151 (1975)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Lindblad G.: A general no-cloning theorem. Lett. Math. Phys. 47, 189–196 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Luo S.: From quantum no-cloning to wave-packet collapse. Phys. Lett. A 374, 1350–1353 (2010)

    Article  ADS  Google Scholar 

  21. Luo S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  22. Luo S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  23. Luo S., Li N., Cao X.: Relation between “no broadcasting” for noncommuting states and “no local broadcasting” for quantum correlations. Phys. Rev. A 79, 054305 (2009)

    Article  ADS  Google Scholar 

  24. Meyer D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014–2017 (2000)

    Article  ADS  Google Scholar 

  25. Ollivier H., Zurek W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2002)

    Article  ADS  Google Scholar 

  26. Piani M., Horodecki P., Horodecki R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)

    Article  ADS  Google Scholar 

  27. Scarani V., Iblisdir S., Gisin N., Acín A.: Quantum cloning. Rev. Mod. Phys. 77, 1225–1256 (2005)

    Article  ADS  Google Scholar 

  28. Schumacher B., Westmoreland M.D.: Quantum mutual information and the one-time pad. Phys. Rev. A 74, 042305 (2006)

    Article  ADS  Google Scholar 

  29. Shabani A., Lidar D.A.: Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett. 102, 100402 (2009)

    Article  ADS  Google Scholar 

  30. Uhlmann A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys. 54, 21–32 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Umegaki H.: Conditional expectation in an operator algebra, IV. Entropy and information. Kōdai Math. Sem. Rep. 14, 59–85 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  32. Vedral V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  33. Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  34. Wootters W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001)

    MATH  MathSciNet  Google Scholar 

  35. Wootters W.K., Zurek W.H.: A single quantum cannot be cloned. Nature (London) 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  36. Yuen H.P.: Amplification of quantum states and noiseless photon amplifiers. Phys. Lett. A 113, 405–407 (1986)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunlong Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, S. On Quantum No-Broadcasting. Lett Math Phys 92, 143–153 (2010). https://doi.org/10.1007/s11005-010-0389-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-010-0389-1

Mathematics Subject Classification (2000)

Keywords

Navigation