Skip to main content
Log in

On the eigenvalues of the Sturm-Liouville operator with potentials from Sobolev spaces

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior of the eigenvalues the Sturm-Liouville operator Ly = −y″ + q(x)y with potentials from the Sobolev space W θ−12 , θ ≥ 0, including the nonclassical case θ ∈ [0, 1) in which the potential is a distribution. The results are obtained in new terms. Let s 2k (q) = λ 1/2k (q) − k, s 2k−1(q) = μ 1/2k (q) − k − 1/2, where {λ k } 1 and {μ k } 1 are the sequences of eigenvalues of the operator L generated by the Dirichlet and Dirichlet-Neumann boundary conditions, respectively,. We construct special Hilbert spaces t θ2 such that the mapping F:W θ−12 t θ2 defined by the equality F(q) = {s n } 1 is well defined for all θ ≥ 0. The main result is as follows: for θ > 0, the mapping F is weakly nonlinear, i.e., can be expressed as F(q) = Uq + Φ(q), where U is the isomorphism of the spaces W θ−12 and t θ2 , and Φ(q) is a compact mapping. Moreover, we prove the estimate ∥Ф(q)∥τCqθ−1, where the exact value of τ = τ(θ) > θ − 1 is given and the constant C depends only on the radius of the ball ∥qθ−R, but is independent of the function q varying in this ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. V. A. Marchenko, The Sturm-Liouville Operators and Their Applications [in Russian], Naukova Dumka, Kiev, 1977.

    Google Scholar 

  2. B. M. Levitan, The Inverse Sturm-Liouville Problem [in Russian], Nauka, Moscow, 1984.

    Google Scholar 

  3. I. M. Gel’fand and G. E. Shilov, Generalized Functions and Actions over Them [in Russian], vol. 1, Fizmatlit, Moscow, 1959.

    Google Scholar 

  4. A. M. Savchuk and A. A. Shkalikov, “The Sturm-Liouville operators with singular potentials,” Mat. Zametki [Math. Notes], 66 (1999), no. 6, 897–912.

    MathSciNet  Google Scholar 

  5. A. M. Savchuk and A. A. Shkalikov, “The Sturm-Liouville operators with distribution potentials,” Trudy Moskov. Mat. Obshch. [Trans. Moscow Math. Soc.], 64 (2003), 159–219.

    MathSciNet  Google Scholar 

  6. A. M. Savchuk and A. A. Shkalikov, “Inverse problem for Sturm-Liuville operators with distribution potentials: Reconstruction from two spectra,” Russian J. Math. Phys., 12 (2005), 507–514.

    MathSciNet  Google Scholar 

  7. R. O. Hryniv and Ya. V. Mykytyuk, “1D Schrödinger operators with singular periodic potentials,” Meth. Func. Anal. Topology, 7 (2001), no. 4, 31–42.

    MathSciNet  Google Scholar 

  8. R. O. Hryniv and Ya. V. Mykytyuk, “Inverse spectral problems for Sturm-Liouville operators with singular potentials,” Inverse Problems, 19 (2003), 665–684.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. O. Hryniv and Ya. V. Mykytyuk, “Inverse spectral problems for Sturm-Liouville operators with singular potentials, II. Reconstruction by two spectra,” in: Functional Analysis and Its Applications, North-Holland Math. Stud., vol. 197, eds. V. Kadets and W. Zelazko, North-Holland, Amsterdam, 2004, pp. 97–114.

    Google Scholar 

  10. R. O. Hryniv and Ya. V. Mykytyuk, “Inverse spectral problems for Sturm-Liouville operators with singular potentials. IV. Potentials in the Sobolev space scale,” Proc. Edinb. Math. Soc. (2), 49 (2006), no. 2, 309–329.

    Article  MathSciNet  Google Scholar 

  11. R. O. Hryniv and Ya. V. Mykytyuk, “Eigenvalue asymptotics for Sturm-Liouville operators with singular potentials,” J. Funct. Anal., 238 (2006), no. 1, 27–57.

    Article  MathSciNet  Google Scholar 

  12. R. O. Hryniv and Ya. V. Mykytyuk, “Transformation operators with singular potentials,” Math. Phys. Anal. Geom., 7 (2004), 119–149.

    Article  MathSciNet  Google Scholar 

  13. T. Kappeler and C. Möhr, “Estimates for periodic and Dirichlet eigenvalues Schrödinger operator with singular potential,” J. Funct. Anal., 186 (2001), no. 1, 62–91.

    Article  MathSciNet  Google Scholar 

  14. E. Korotyaev, “Characterization of the spectrum of Schrödinger operator with periodic distributions,” Int. Math. Res. Not. (2003), no. 37, 2019–2031.

  15. M. I. Kadets, “The exact value of the Wiener-Paley constant,” Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 155 (1964), no. 6, 1253–1254.

    MathSciNet  Google Scholar 

  16. H. Triebel, Theory of Function Spaces, Geest und Portig, Leipzig, 1983; Russian transl.: Mir, Moscow, 1986.

    Google Scholar 

  17. O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Expressions for Functions and Embedding Theorems [in Russian], Nauka, Moscow, 1975.

    Google Scholar 

  18. G. Borg, “Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte,” Acta Math., 78 (1946), 1–96.

    Article  MathSciNet  Google Scholar 

  19. J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Acad. Press, Orlando, 1987.

    MATH  Google Scholar 

  20. J. Dieudonné, Foundations of Modern Analysis, New York, 1960; Russian transl.: Mir, Moscow, 1964.

  21. L. Tartar, “Interpolation non linéaire et regularité,” J. Funct. Anal., 9 (1972), 469–489.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Matematicheskie Zametki, vol. 80, no. 6, 2006, pp. 864–884.

Original Russian Text Copyright © 2006 by A. M. Savchuk, A. A. Shkalikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savchuk, A.M., Shkalikov, A.A. On the eigenvalues of the Sturm-Liouville operator with potentials from Sobolev spaces. Math Notes 80, 814–832 (2006). https://doi.org/10.1007/s11006-006-0204-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11006-006-0204-6

Key words

Navigation