Skip to main content
Log in

Mg2+/Ca2+ cation binding cycle of guanylyl cyclase activating proteins (GCAPs): role in regulation of photoreceptor guanylyl cyclase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Photon absorption by photoreceptors activates hydrolysis of cGMP, which shuts down cGMP-gated channels and decreases free Ca2+ concentrations in outer segment. Suppression of Ca2+ influx through the cGMP channel by light activates retinal guanylyl cyclase through guanylyl cyclase activating proteins (GCAPs) and thus expedites photoreceptors recovery from excitation and restores their light sensitivity. GCAP1 and GCAP2, two ubiquitous among vertebrate species isoforms of GCAPs that activate retGC during rod response to light, are myristoylated Ca2+/Mg2+-binding proteins of the EF-hand superfamily. They consist of one non-metal binding EF-hand-like domain and three other EF-hands, each capable of binding Ca2+ and Mg2+. In the metal binding EF-hands of GCAP1, different point mutations can selectively block binding of Ca2+ or both Ca2+ and Mg2+ altogether. Activation of retGC at low Ca2+ (light adaptation) or its inhibition at high Ca2+ (dark adaptation) follows a cycle of Ca2+/Mg2+ exchange in GCAPs, rather than release of Ca2+ and its binding by apo-GCAPs. The Mg2+ binding in two of the EF-hands controls docking of GCAP1 with retGC1 in the conditions of light adaptation and is essential for activation of retGC. Mg2+ binding in a C-terminal EF-hand contributes to neither retGC1 docking with the cyclase nor its subsequent activation in the light, but is specifically required for switching the cyclase off in the conditions of dark adaptation by binding Ca2+. The Mg2+/Ca2+ exchange in GCAP1 and 2 operates within different range of intracellular Ca2+ concentrations and provides a two-step activation of the cyclase during rod recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pugh EN Jr, Duda T, Sitaramayya A, Sharma RK (1997) Photoreceptor guanylate cyclases: a review. Biosci Rep 17:429–473

    Article  CAS  PubMed  Google Scholar 

  2. Pugh EN Jr, Nikonov S, Lamb TD (1999) Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr Opin Neurobiol 9:410–418

    Article  CAS  PubMed  Google Scholar 

  3. Nakatani K, Chen C, Yau KW, Koutalos Y (2002) Calcium and phototransduction. Adv Exp Med Biol 514:1–20

    CAS  PubMed  Google Scholar 

  4. Burns ME, Mendez A, Chen J, Baylor DA (2002) Dynamics of cyclic GMP synthesis in retinal rods. Neuron 36:81–91

    Article  CAS  PubMed  Google Scholar 

  5. Hodgkin AL, Nunn BJ (1988) Control of light-sensitive current in salamander rods. J Physiol 403:439–471

    CAS  PubMed  Google Scholar 

  6. Koch KW, Stryer L (1988) Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 334:64–66

    Article  CAS  PubMed  Google Scholar 

  7. Koutalos Y, Nakatani K, Tamura T, Yau KW (1995) Characterization of guanylate cyclase activity in single retinal rod outer segments. J Gen Physiol 106:863–890

    Article  CAS  PubMed  Google Scholar 

  8. Dizhoor AM, Lowe DG, Olshevskaya EV, Laura RP, Hurley JB (1994) The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 12:1345–1352

    Article  CAS  PubMed  Google Scholar 

  9. Lowe DG, Dizhoor AM, Liu K, Gu Q, Spencer M, Laura R, Lu L, Hurley JB (1995) Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc Natl Acad Sci USA 92:5535–5539

    Article  CAS  PubMed  Google Scholar 

  10. Yang RB, Foster DC, Garbers DL, Fulle HJ (1995) Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 92:602–606

    Article  CAS  PubMed  Google Scholar 

  11. Garbers DL (1999) The guanylyl cyclase receptors. Methods 19:477–484

    Article  CAS  PubMed  Google Scholar 

  12. Sharma RK (2002) Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biochem 230:3–30

    Article  CAS  PubMed  Google Scholar 

  13. Laura RP, Dizhoor AM, Hurley JB (1996) The membrane guanylyl cyclase, retinal guanylyl cyclase-1, is activated through its intracellular domain. J Biol Chem 271:11646–11651

    Article  CAS  PubMed  Google Scholar 

  14. Laura RP, Hurley JB (1998) The kinase homology domain of retinal guanylyl cyclases 1 and 2 specifies the affinity and cooperativity of interaction with guanylyl cyclase activating protein-2. Biochemistry 37:11264–11271

    Article  CAS  PubMed  Google Scholar 

  15. Duda T, Fik-Rymarkiewicz E, Venkataraman V, Krishnan R, Koch KW, Sharma RK (2005) The calcium-sensor guanylate cyclase activating protein type 2 specific site in rod outer segment membrane guanylate cyclase type 1. Biochemistry 44:7336–7345

    Article  CAS  PubMed  Google Scholar 

  16. Gorczyca WA, Van Hooser JP, Palczewski K (1994) Nucleotide inhibitors and activators of retinal guanylyl cyclase. Biochemistry 33:3217–3222

    Article  CAS  PubMed  Google Scholar 

  17. Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, Hurley JB (1995) Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 270:25200–25206

    Article  CAS  PubMed  Google Scholar 

  18. Gorczyca WA, Polans AS, Surgucheva IG, Subbaraya I, Baehr W, Palczewski K (1995) Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction. J Biol Chem 270:22029–22036

    Article  CAS  PubMed  Google Scholar 

  19. Haeseleer F, Sokal I, Li N, Pettenati M, Rao N, Bronson D, Wechter R, Baehr W, Palczewski K (1999) Molecular characterization of a third member of the guanylyl cyclase-activating protein subfamily. J Biol Chem 274:6526–6535

    Article  CAS  PubMed  Google Scholar 

  20. Gray-Keller MP, Detwiler PB (1994) The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron 13:849–861

    Article  CAS  PubMed  Google Scholar 

  21. Sampath AP, Matthews HR, Cornwall MC, Bandarchi J, Fain GL (1999) Light-dependent changes in outer segment free-Ca2+ concentration in salamander cone photoreceptors. J Gen Physiol 113:267–277

    Article  CAS  PubMed  Google Scholar 

  22. Woodruff ML, Sampath AP, Matthews HR, Krasnoperova NV, Lem J, Fain GL (2002) Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice. J Physiol 542:843–854

    Article  CAS  PubMed  Google Scholar 

  23. Woodruff ML, Wang Z, Chung HY, Redmond TM, Fain GL, Lem J (2003) Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis. Nat Genet 35:158–164 [Epub 2003 Sep 2021]

    Google Scholar 

  24. Dizhoor AM, Hurley JB (1996) Inactivation of EF-hands makes GCAP-2 (p24) a constitutive activator of photoreceptor guanylyl cyclase by preventing a Ca2+-induced “activator-to-inhibitor” transition. J Biol Chem 271:19346–19350

    Article  CAS  PubMed  Google Scholar 

  25. Dizhoor AM, Boikov SG, Olshevskaya EV (1998) Constitutive activation of photoreceptor guanylate cyclase by Y99C mutant of GCAP-1. Possible role in causing human autosomal dominant cone degeneration. J Biol Chem 273:17311–17314

    Article  CAS  PubMed  Google Scholar 

  26. Peshenko IV, Dizhoor AM (2007) Activation and inhibition of photoreceptor guanylyl cyclase by guanylyl cyclase activating protein 1 (GCAP-1): the functional role of Mg2+/Ca2+ exchange in EF-hand domains. J Biol Chem 282:21645–21652

    Article  CAS  PubMed  Google Scholar 

  27. Mendez A, Burns ME, Sokal I, Dizhoor AM, Baehr W, Palczewski K, Baylor DA, Chen J (2001) Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc Natl Acad Sci USA 98:9948–9953

    Article  CAS  PubMed  Google Scholar 

  28. Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, Huang J, Zhao X, Crabb JW, Johnson RS, Walsh KA, Gray-Keller MP, Detwiller PB, Baehr W (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 13:395–404

    Article  CAS  PubMed  Google Scholar 

  29. Imanishi Y, Yang L, Sokal I, Filipek S, Palczewski K, Baehr W (2004) Diversity of guanylate cyclase-activating proteins (GCAPs) in teleost fish: characterization of three novel GCAPs (GCAP4, GCAP5, GCAP7) from zebrafish (Danio rerio) and prediction of eight GCAPs (GCAP1–8) in pufferfish (Fugu rubripes). J Mol Evol 59:204–217

    Article  CAS  PubMed  Google Scholar 

  30. Peshenko IV, Dizhoor AM (2006) Ca2+ and Mg2+ binding properties of GCAP-1. Evidence that Mg2+-bound form is the physiological activator of photoreceptor guanylyl cyclase. J Biol Chem 281:23830–23841

    Article  CAS  PubMed  Google Scholar 

  31. Rudnicka-Nawrot M, Surgucheva I, Hulmes JD, Haeseleer F, Sokal I, Crabb JW, Baehr W, Palczewski K (1998) Changes in biological activity and folding of guanylate cyclase-activating protein 1 as a function of calcium. Biochemistry 37:248–257

    Article  CAS  PubMed  Google Scholar 

  32. Lim S, Peshenko I, Dizhoor A, Ames JB (2009) Effects of Ca2+, Mg2+, and myristoylation on guanylyl cyclase activating protein 1 structure and stability. Biochemistry 48:850–862

    Article  CAS  PubMed  Google Scholar 

  33. Peshenko IV, Dizhoor AM (2004) Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+ sensors: implications for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors. J. Biol. Chem. 279:16903–16906

    Article  CAS  PubMed  Google Scholar 

  34. Chen C, Nakatani K, Koutalos Y (2003) Free magnesium concentration in salamander photoreceptor outer segments. J Physiol 553:125–135

    Article  CAS  PubMed  Google Scholar 

  35. Peshenko IV, Olshevskaya EV, Dizhoor AM (2008) Binding of guanylyl cyclase activating protein 1 (GCAP1) to retinal guanylyl cyclase (RetGC1). The role of individual EF-hands. J Biol Chem 283:21747–21757

    Article  CAS  PubMed  Google Scholar 

  36. Sokal I, Li N, Klug CS, Filipek S, Hubbell WL, Baehr W, Palczewski K (2001) Calcium-sensitive regions of GCAP1 as observed by chemical modifications, fluorescence, and EPR spectroscopies. J Biol Chem 276:43361–43373

    Article  CAS  PubMed  Google Scholar 

  37. Sokal I, Otto-Bruc AE, Surgucheva I, Verlinde CL, Wang CK, Baehr W, Palczewski K (1999) Conformational changes in guanylyl cyclase-activating protein 1 (GCAP1) and its tryptophan mutants as a function of calcium concentration. J Biol Chem 274:19829–19837

    Article  CAS  PubMed  Google Scholar 

  38. Ermilov AN, Olshevskaya EV, Dizhoor AM (2001) Instead of binding calcium, one of the EF-hand structures in guanylyl cyclase activating protein-2 is required for targeting photoreceptor guanylyl cyclase. J Biol Chem 276:48143–48148

    CAS  PubMed  Google Scholar 

  39. Hwang JY, Schlesinger R, Koch KW (2004) Irregular dimerization of guanylate cyclase-activating protein 1 mutants causes loss of target activation. Eur J Biochem 271:3785–3793

    Article  CAS  PubMed  Google Scholar 

  40. Ames JB, Dizhoor AM, Ikura M, Palczewski K, Stryer L (1999) Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases. J Biol Chem 274:19329–19337

    Article  CAS  PubMed  Google Scholar 

  41. Stephen R, Bereta G, Golczak M, Palczewski K, Sousa MC (2007) Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1. Structure 15:1392–1402

    Article  CAS  PubMed  Google Scholar 

  42. Stephen R, Filipek S, Palczewski K, Sousa MC (2008) Ca2+-dependent regulation of phototransduction. Photochem Photobiol 84:903–910

    Article  CAS  PubMed  Google Scholar 

  43. Stephen R, Palczewski K, Sousa MC (2006) The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies. J Mol Biol 359:266–275

    Article  CAS  PubMed  Google Scholar 

  44. Payne AM, Downes SM, Bessant DA, Taylor R, Holder GE, Warren MJ, Bird AC, Bhattacharya SS (1998) A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet 7:273–277

    Article  CAS  PubMed  Google Scholar 

  45. Wilkie SE, Li Y, Deery EC, Newbold RJ, Garibaldi D, Bateman JB, Zhang H, Lin W, Zack DJ, Bhattacharya SS, Warren MJ, Hunt DM, Zhang K (2001) Identification and functional consequences of a new mutation (E155G) in the gene for GCAP1 that causes autosomal dominant cone dystrophy. Am J Hum Genet 69:471–480

    Article  CAS  PubMed  Google Scholar 

  46. Sokal I, Li N, Surgucheva I, Warren MJ, Payne AM, Bhattacharya SS, Baehr W, Palczewski K (1998) GCAP1 (Y99C) mutant is constitutively active in autosomal dominant cone dystrophy. Mol Cell 2:129–133

    Article  CAS  PubMed  Google Scholar 

  47. Olshevskaya EV, Calvert PD, Woodruff ML, Peshenko IV, Savchenko AB, Makino CL, Ho YS, Fain GL, Dizhoor AM (2004) The Y99C mutation in guanylyl cyclase-activating protein 1 increases intracellular Ca2+ and causes photoreceptor degeneration in transgenic mice. J Neurosci 24:6078–6085

    Article  CAS  PubMed  Google Scholar 

  48. Woodruff ML, Olshevskaya EV, Savchenko AB, Peshenko IV, Barrett R, Bush RA, Sieving PA, Fain GL, Dizhoor AM (2007) Constitutive excitation by Gly90Asp rhodopsin rescues rods from degeneration caused by elevated production of cGMP in the dark. J Neurosci 27:8805–8815

    Article  CAS  PubMed  Google Scholar 

  49. Duda T, Goraczniak R, Surgucheva I, Rudnicka-Nawrot M, Gorczyca WA, Palczewski K, Sitaramayya A, Baehr W, Sharma RK (1996) Calcium modulation of bovine photoreceptor guanylate cyclase. Biochemistry 35:8478–8482

    Article  CAS  PubMed  Google Scholar 

  50. Yang RB, Robinson SW, Xiong WH, Yau KW, Birch DG, Garbers DL (1999) Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci 19:5889–5897

    CAS  PubMed  Google Scholar 

  51. Hwang JY, Lange C, Helten A, Hoppner-Heitmann D, Duda T, Sharma RK, Koch KW (2003) Regulatory modes of rod outer segment membrane guanylate cyclase differ in catalytic efficiency and Ca2+-sensitivity. Eur J Biochem 270:3814–3821

    Article  CAS  PubMed  Google Scholar 

  52. Baehr W, Karan S, Maeda T, Luo DG, Li S, Bronson JD, Watt CB, Yau KW, Frederick JM, Palczewski K (2007) The function of guanylate cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors. J Biol Chem 282:8837–8847

    Article  CAS  PubMed  Google Scholar 

  53. Hwang JY, Koch KW (2002) Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2. Biochemistry 41:13021–13028

    Article  CAS  PubMed  Google Scholar 

  54. Makino CL, Peshenko IV, Wen XH, Olshevskaya EV, Barrett R, Dizhoor AM (2008) A role for GCAP2 in regulating the photoresponse. Guanylyl cyclase activation and rod electrophysiology in GUCA1B knock-out mice. J Biol Chem 283:29135–29143

    Article  CAS  PubMed  Google Scholar 

  55. Howes K, Bronson JD, Dang YL, Li N, Zhang K, Ruiz C, Helekar B, Lee M, Subbaraya I, Kolb H, Chen J, Baehr W (1998) Gene array and expression of mouse retina guanylate cyclase activating proteins 1 and 2. Invest Ophthalmol Vis Sci 39:867–875

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by EY11522 grant from NIH. A.M. Dizhoor is the Martin and Florence Hafter Chair Professor of Pharmacology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Dizhoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dizhoor, A.M., Olshevskaya, E.V. & Peshenko, I.V. Mg2+/Ca2+ cation binding cycle of guanylyl cyclase activating proteins (GCAPs): role in regulation of photoreceptor guanylyl cyclase. Mol Cell Biochem 334, 117–124 (2010). https://doi.org/10.1007/s11010-009-0328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0328-6

Keywords

Navigation