Skip to main content
Log in

Alterations in membrane fluidity and dynamics in experimental colon cancer and its chemoprevention by diclofenac

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We examined the role of membrane fluidity and dynamics as important early events in the carcinogenic transformation of colonic epithelial cells. 1,2-Dimethylhydrazine dihydrochloride (DMH) was used to induce initial stages of colon cancer and diclofenac was used for chemoprevention. To determine alterations of membrane fluidity of rat colonic epithelial cells, fluidity (inverse of fluorescence polarization) and order parameter were studied with 1,6-diphenylhexatriene (DPH) polarization. Order parameter as well as fluorescence polarization was found to be significantly decreased, thus demonstrating an increase in the fluidity of the membrane. To further confirm the fluidity changes, microviscosity of the cell membrane was studied using pyrene excimer formation, which showed a significant decrease in microviscosity and hence elevated membrane fluidity (translational diffusion). The colonocytes were stained with merocyanine 540 (MC540) to further elaborate the changes in membrane fluidity and lipid packing. The increased number of colonocytes showing high MC540 fluorescence pointed towards the wide spaces and hence, high fluidity in the membrane after DMH treatment. Membrane dynamics studies, i.e., lipid phase separation and membrane phase state were carried out using N-NBD-PE and Laurdan, respectively. We saw a transition from the gel to a more liquid crystalline state of the membrane in the Laurdan experiment. Further more percentage quenching (%Q) value of N-NBD-PE showed less phase separation (or domain formation). Diclofenac co-administration with DMH was successful in reverting the changes observed, confirming the role of these anti-inflammatory drugs in considerable lipid affinity and consequently in the chemoprevention of early stages of colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raghuraman H, Kelkar D, Chattopadhyay A (2003) Novel insights into membrane protein structure and dynamics utilizing the wavelength-selective fluorescence approach. Proc Indian Natl Sci Acad 69A(1):25–35

    Google Scholar 

  2. Arora A, Raghuraman H, Chattopadhyay A (2004) Influence of cholesterol and ergosterol on membrane dynamics: a fluorescence approach. Biochem Biophys Res Commun 318(4):920–926

    Article  CAS  PubMed  Google Scholar 

  3. McLaughlin S, Wang J, Gambhir A, Murray D (2002) PIP(2) and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 31:151–175

    Article  CAS  PubMed  Google Scholar 

  4. German JB, Dillard CJ, Whelan J (1995) Symposium: biological effects of dietary arachidonic acid. J Nutr 126:1076S–1080S

    Google Scholar 

  5. Vigdahl RL, Tukey RH (1977) Mechanism of action of novel anti-inflammatory drugs diflumidone and R-805. Biochem Pharmacol 26:307–311

    Article  CAS  PubMed  Google Scholar 

  6. Ricchi P, Zarrilli R, Palma AD, Acquaviva AM (2003) Nonsteroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy. Br J Cancer 88:803–807

    Article  CAS  PubMed  Google Scholar 

  7. Kaur J, Sanyal SN (2010) Oxidative stress and stress-signaling in chemoprevention of early colon cancer by diclofenac. Am J Biomed Sci 2(1):63–78

    Article  CAS  Google Scholar 

  8. Kaur J, Sanyal SN (2009) Association of PI3-kinase and Wnt signaling in non-steroidal anti-inflammatory drug-induced apoptosis in experimental colon cancer. Am J Biomed Sci 1(4):395–405

    Article  CAS  Google Scholar 

  9. Kaur J, Sanyal SN (2009b) Induction of apoptosis as a potential chemopreventive effect of dual cyclooxygenase inhibitor, diclofenac in early colon carcinogenesis. J Env Pathol Toxicol Oncol (in press)

  10. Lucio M, Ferreiara H, Lima JLFC, Matos C, de-Castro B, Reis S (2004) Influence of some anti-inflammatory drugs in membrane fluidity studied by fluorescence anisotropy measurements. Phys Chem Chem Phys 6:1493–1498

    Article  CAS  Google Scholar 

  11. Wiseman H, Cannon M, Arnstein HR, Barlow DJ (1992) The structural mimicry of membrane sterols by tamoxifen: evidence from cholesterol coefficients and molecular-modeling for its action as a membrane anti-oxidant and an anticancer agent. Biochim Biophys Acta 1138:197–202

    CAS  PubMed  Google Scholar 

  12. Kanwar SS, Vaiphei K, Nehru B, Sanyal SN (2008) Antioxidative effects of non-steroidal anti-inflammatory drugs during the initiation stages of experimental colon carcinogenesis in rats. J Environ Pathol Toxicol Oncol 27(2):89–100

    CAS  PubMed  Google Scholar 

  13. Mouille B, Robert V, Blachier F (2004) Adaptive increase of ornithine production and decrease of ammonia metabolism in rat colonocytes and hyperproteic diet ingestion. Am J Physiol Gastrointest Liver Physiol 287:G344–G351

    Article  CAS  PubMed  Google Scholar 

  14. Roediger WE, Truelove SC (1979) Method of preparing isolated colonic epithelial cells (colonocytes) for metabolic studies. Gut 20:484–488

    Article  CAS  PubMed  Google Scholar 

  15. Shinitzky M, Barenholz Y (1974) Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J Biol Chem 249:2652–2657

    CAS  PubMed  Google Scholar 

  16. Pottel H, Van der Meer W, Herreman W (1983) Correlation between the order parameter and the steady state fluorescence anisotropy of 1,6 diphenyl-1,3,5-hexatriene and an evaluation of membrane fluidity. Biochim Biophys Acta 730:181–186

    Article  CAS  Google Scholar 

  17. Massey V, Williums CH Jr (1965) On the reaction mechanism of yeast glutathione reductase. J Biol Chem 240:4470–4475

    CAS  PubMed  Google Scholar 

  18. Vanderkooi JM, Callis JB (1974) Pyrene. A probe of lateral diffusion in the hydrophobic region of membranes. Biochemistry 13(19):4000–4006

    Article  CAS  PubMed  Google Scholar 

  19. Baumber J, Meyers SA (2006) Changes in membrane lipid order with capacitation in rhesus macaque (Macaca mulatta) spermatozoa. J Androl 27(4):578–587

    Article  CAS  PubMed  Google Scholar 

  20. Nichols JW, Pagano RE (1981) Kinetics of soluble lipid monomer diffusion between vesicles. Biochemistry 20:2783–2789

    Article  CAS  PubMed  Google Scholar 

  21. Hoekstra D (1982) Fluorescence method for measuring the kinetics of Ca2+-induced phase separations in phophatidylserine-containing lipid vesicles. Biochemistry 21:1055–1061

    Article  CAS  PubMed  Google Scholar 

  22. Parasassi T, DeStasio G, d’Ubaldo A, Gratton E (1990) Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J 57:1179–1186

    Article  CAS  PubMed  Google Scholar 

  23. Ambrosini A, Zolese G, Wozniak M, Genga D, Boscaro M, Mantero F, Balerica G (2003) Idiopathic infertility: susceptibility of spermatozoa to in vitro capacitation, in the presence and the absence of palmitylethanolamide (a homologue of anandamide), is strongly correlated with membrane polarity studies by Laurdan fluorescence. Mol Hum Reprod 9:381–388

    Article  CAS  PubMed  Google Scholar 

  24. Parasassi T, DeStasio G, Ravagnan G, Rusch RM, Gratton E (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J 60:179–180

    Article  CAS  PubMed  Google Scholar 

  25. Parasassi T, Ravagnan G, Rusch RM, Gratton E (1993) Modulation and dynamics of phase properties in phopholipid mixtures detected by Laurdan fluorescence. Photochem Photobiol 57:403–410

    Article  CAS  PubMed  Google Scholar 

  26. Baritaki S, Apostolakis S, Kanellou P, Dimanche-Boitrel MT, Spandidos DA, Bonavida B (2007) Reversal of tumor resistance to apoptotic stimuli by alteration of membrane fluidity: therapeutic implications. Adv Cancer Res 98:149–190

    Article  CAS  PubMed  Google Scholar 

  27. Schachter D, Shinitzky M (1977) Fluorescence polarization studies of rat intestinal microvillus membranes. J Clin Invest 59:536–548

    Article  CAS  PubMed  Google Scholar 

  28. Fuchs P, Parola P, Robbins W, Blout ER (1975) Fluorescence polarizations and viscosities of membrane lipids of 3T3 cells. Proc Natl Acad Sci USA 72:3351–3354

    Article  CAS  PubMed  Google Scholar 

  29. Galla M, Sackmann E (1974) Lateral diffusion in the hydrophobic region of membranes: use of pyrene excimers as optical probes. Biochim Biophys Acta 339(1):103–115

    Article  CAS  PubMed  Google Scholar 

  30. Brigati C, Noonan DM, Albini A, Benelli R (2002) Tumors and inflammatory infiltrates: friends and foes? Clin Exp Metastasis 19(3):247–258

    Article  CAS  PubMed  Google Scholar 

  31. McEvoy L, Schlegel RA, Williamson P, Del Buono BJ (1998) Merocyanine 540 as a flow cytometric probe of membrane lipid organization in leukocytes. J Leukoc Biol 44:337–344

    Google Scholar 

  32. Chen JY, Mak NK, Leung WN, Chen SC, Leung KN, Cheung NH (1997) A study of the binding of merocyanine 540 to myeloid leukemia M1 cells using an intensified charge-coupled device for fluorescence imaging microscopy. J Photochem Photobiol 39:49–55

    Article  CAS  Google Scholar 

  33. Yu H, Hui S (1992) Merocyanine 540 as a probe to monitor molecular packing of phosphatidylcholine: a monolayer epifluorescence microscopy and spectroscopy study. Biochim Biophys Acta 1107:245–254

    Article  CAS  PubMed  Google Scholar 

  34. Lagerberg JW, Kallen KJ, Haest CW, VanSteveninck J, Dubbelman TM (1995) Factors affecting the amount and the mode of Merocyanine 540 binding to the membrane of human erythrocytes. A comparison with the binding to leukemia cells. Biochim Biophys Acta 1235:428–436

    Article  PubMed  Google Scholar 

  35. Gaffney DK, Feix JB, Schwarz HP, Struve MF, Sieber F (1991) Cholesterol content but not plasma membrane fluidity influences the susceptibility of L1210 leukemia cells to merocyanine 540-sensitized irradiation. Photochem Photobiol 54:717–723

    Article  CAS  PubMed  Google Scholar 

  36. Onganer Y, Quitevis EL (1994) Dynamics of merocyanine 540 in model biomembranes: photoisomerization studies in small unilamellar vesicles. Biochim Biophys Acta 1192:27–34

    Article  CAS  PubMed  Google Scholar 

  37. Mower DA Jr, Peckham DW, Illera VA, Fishbaugh JK, Stunz LL, Ashman RF (1994) Decreased membrane phospholipid packing and decreased cell size precede DNA cleavage in mature mouse B cell apoptosis. J Immunol 152:4832–4842

    CAS  PubMed  Google Scholar 

  38. Kanwar SS, Vaiphei K, Nehru B, Sanyal SN (2007) Chemopreventive effects of non-steroidal anti-inflammatory drugs in the membrane lipid composition and fluidity parameters of the 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. Drug Chem Toxicol 30:293–309

    Article  CAS  PubMed  Google Scholar 

  39. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378

    Article  CAS  PubMed  Google Scholar 

  40. Chong PL-G (1990) Interactions of Laurdan and PRODAN with membranes at high pressure. High Press Res 5:761–763

    Article  Google Scholar 

  41. Parasassi T, Conti F, Gratton E (1986) Time-resolved fluorescence emission spectra of Laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry. Cell Mol Biol 32:103–108

    CAS  PubMed  Google Scholar 

  42. Parasassi T, Di Stefano M, Loiero M, Ravagnan G, Gratton E (1994) Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan fluorescence. Biophys J 66:120–132

    Article  CAS  PubMed  Google Scholar 

  43. Brasitus TA, Dudeja PK, Dahiya R (1986) Premalignant alterations in the lipid composition and fluidity of colonic brush border membranes of rats administered 1,2-dimethylhydrazine. J Clin Invest 77:831–840

    Article  CAS  PubMed  Google Scholar 

  44. Kanwar SS, Roy KR, Nehru B, Reddanna P, Sanyal SN (2009) Na+-stimulated Na+/H+ exchange and an unfavorable Ca2+ homeostasis initiate the cycloxygenase-2 inhibitors-induced apoptotic signals in colonic epithelial cells during the early stage of colon carcinogenesis. Oncol Res 18:1–15

    Article  CAS  Google Scholar 

  45. Garcia-Martin ML, Herigault G, Remy C, Farion R, Ballesteros P, Coles JA, Cerdan S, Ziegler A (2001) Mapping extracellular pH in rat brain gliomas in vivo by 1H magnetic resonance spectroscopic imaging: comparison with maps of metabolites. Cancer Res 61:6524–6531

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Financial assistance from the Council of Scientific and Industrial Research (CSIR), Government of India (37(1308)/07/EMR-II) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Sanyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, J., Sanyal, S.N. Alterations in membrane fluidity and dynamics in experimental colon cancer and its chemoprevention by diclofenac. Mol Cell Biochem 341, 99–108 (2010). https://doi.org/10.1007/s11010-010-0441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0441-6

Keywords

Navigation