Skip to main content
Erschienen in: Meccanica 5/2013

01.07.2013

Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach

verfasst von: S. Rajasekaran

Erschienen in: Meccanica | Ausgabe 5/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The free vibration of axially functionally graded (FG) non-uniform beams with different boundary conditions is studied using Differential Transformation (DT) based Dynamic Stiffness approach. This method is capable of modeling any beam (Timoshenko or Euler, centrifugally stiffened or not) whose cross sectional area, moment of Inertia and material properties vary along the beam. The effectiveness of the method is confirmed by comparing the present results with existing closed form solutions and numerical results. In FG beams, flexural rigidity and mass density may take majority of functions including polynomials, trigonometric and exponential functions (converted to polynomial expressions). DT based Dynamic stiffness approach is proved to be a versatile and simple approach compared to many other methods already proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Koizumi M (1993) The concept of FGM. Ceramic Trans Funct Grad Mater 34:3–10 Koizumi M (1993) The concept of FGM. Ceramic Trans Funct Grad Mater 34:3–10
2.
Zurück zum Zitat Koizumi M (1997) FGM activities in Japan. Composites, Part B, Eng 28:1–4 CrossRef Koizumi M (1997) FGM activities in Japan. Composites, Part B, Eng 28:1–4 CrossRef
3.
Zurück zum Zitat Elishakoff I, Perez A (2005) Design of a polynomially inhomogeneous bar with a tip mass for specified mode shape and natural frequency. J Sound Vib 287(4–5):1004–1012 ADSCrossRef Elishakoff I, Perez A (2005) Design of a polynomially inhomogeneous bar with a tip mass for specified mode shape and natural frequency. J Sound Vib 287(4–5):1004–1012 ADSCrossRef
4.
Zurück zum Zitat Elishakoff I, Pentaras D (2006) Apparently the first closed-form solution of inhomogeneous elastically restrained vibrating beams. J Sound Vib 298(1–2):439–445 MathSciNetADSMATHCrossRef Elishakoff I, Pentaras D (2006) Apparently the first closed-form solution of inhomogeneous elastically restrained vibrating beams. J Sound Vib 298(1–2):439–445 MathSciNetADSMATHCrossRef
5.
Zurück zum Zitat Banerjee JR (1997) Dynamic stiffness formulation for structural elements: a general approach. Comput Struct 63:101–103 MATHCrossRef Banerjee JR (1997) Dynamic stiffness formulation for structural elements: a general approach. Comput Struct 63:101–103 MATHCrossRef
6.
Zurück zum Zitat Banerjee JR (2000) Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J Sound Vib 233(5):857–875 ADSMATHCrossRef Banerjee JR (2000) Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J Sound Vib 233(5):857–875 ADSMATHCrossRef
7.
Zurück zum Zitat Wang G, Wereley NM (2004) Free vibration analysis of rotating blades with uniform tapers. AIAA J 42(12):429–437 CrossRef Wang G, Wereley NM (2004) Free vibration analysis of rotating blades with uniform tapers. AIAA J 42(12):429–437 CrossRef
8.
Zurück zum Zitat Banerjee JR, Su H, Jackson DR (2006) Free vibration of rotating tapered beams using the dynamic stiffness method. J Sound Vib 298(4–5):1034–1054 ADSCrossRef Banerjee JR, Su H, Jackson DR (2006) Free vibration of rotating tapered beams using the dynamic stiffness method. J Sound Vib 298(4–5):1034–1054 ADSCrossRef
9.
Zurück zum Zitat Vinod KG, Gopalakrishnan S, Ganguli R (2007) Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements. Int J Solids Struct 44:5875–5893 MATHCrossRef Vinod KG, Gopalakrishnan S, Ganguli R (2007) Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements. Int J Solids Struct 44:5875–5893 MATHCrossRef
10.
Zurück zum Zitat Doyle JF (1977) Wave propagation in structures, 2nd edn. Springer, Berlin (Chap 5) Doyle JF (1977) Wave propagation in structures, 2nd edn. Springer, Berlin (Chap 5)
11.
Zurück zum Zitat Wright AD, Smith VR, Thresher TW, Wang JLC (1982) Vibration modes of centrifugally stiffened beams. ASME J Appl Mech 49(2):197–202 MATHCrossRef Wright AD, Smith VR, Thresher TW, Wang JLC (1982) Vibration modes of centrifugally stiffened beams. ASME J Appl Mech 49(2):197–202 MATHCrossRef
12.
Zurück zum Zitat Huang Y, Li XF (2010) A new approach for free vibration of axially functionally graded beams with non-uniform cross section. J Sound Vib 329(11):2291–2303 ADSCrossRef Huang Y, Li XF (2010) A new approach for free vibration of axially functionally graded beams with non-uniform cross section. J Sound Vib 329(11):2291–2303 ADSCrossRef
13.
Zurück zum Zitat Mabie HH, Rogers CB (1972) Transverse vibration of double-tapered cantilever beams. J Acoust Soc Am 51:1771–1774 ADSCrossRef Mabie HH, Rogers CB (1972) Transverse vibration of double-tapered cantilever beams. J Acoust Soc Am 51:1771–1774 ADSCrossRef
14.
Zurück zum Zitat Downs B (1977) Transverse vibration of cantilever beam having unequal breadth and depth tapers. ASME J Appl Mech 44:737–742 CrossRef Downs B (1977) Transverse vibration of cantilever beam having unequal breadth and depth tapers. ASME J Appl Mech 44:737–742 CrossRef
15.
Zurück zum Zitat Gupta RS, Rao SS (1978) Finite element eigen value analysis of tapered and twisted Timoshenko beams. J Sound Vib 56(2):187–200 ADSMATHCrossRef Gupta RS, Rao SS (1978) Finite element eigen value analysis of tapered and twisted Timoshenko beams. J Sound Vib 56(2):187–200 ADSMATHCrossRef
16.
Zurück zum Zitat Dawe DJ (1978) A finite element for the vibration analysis of Timoshenko beams. J Sound Vib 60(1):11–20 ADSMATHCrossRef Dawe DJ (1978) A finite element for the vibration analysis of Timoshenko beams. J Sound Vib 60(1):11–20 ADSMATHCrossRef
17.
Zurück zum Zitat To CWS (1981) A linearly tapered beam finite element incorporating shear deformation and rotary inertia for vibration analysis. J Sound Vib 78(4):475–484 ADSCrossRef To CWS (1981) A linearly tapered beam finite element incorporating shear deformation and rotary inertia for vibration analysis. J Sound Vib 78(4):475–484 ADSCrossRef
18.
19.
Zurück zum Zitat Lee SY, Lin SM (1994) Bending vibrations of rotating non-uniform Timoshenko beams with an elastically restrained root. ASME J Appl Mech 61:949–955 MATHCrossRef Lee SY, Lin SM (1994) Bending vibrations of rotating non-uniform Timoshenko beams with an elastically restrained root. ASME J Appl Mech 61:949–955 MATHCrossRef
20.
Zurück zum Zitat Du H, Lim MK, Liew KK (1994) A power series solution for vibration of a rotating Timoshenko beam. J Sound Vib 175(4):505–523 ADSMATHCrossRef Du H, Lim MK, Liew KK (1994) A power series solution for vibration of a rotating Timoshenko beam. J Sound Vib 175(4):505–523 ADSMATHCrossRef
21.
Zurück zum Zitat Nagaraj VT (1996) Approximate formula for the frequencies of a rotating Timoshenko beam. J Aircr 33:637–639 CrossRef Nagaraj VT (1996) Approximate formula for the frequencies of a rotating Timoshenko beam. J Aircr 33:637–639 CrossRef
22.
Zurück zum Zitat Lin SC, Hsiao KM (2001) Vibration analysis of a rotating Timoshenko beam. J Sound Vib 240(2):303–322 ADSMATHCrossRef Lin SC, Hsiao KM (2001) Vibration analysis of a rotating Timoshenko beam. J Sound Vib 240(2):303–322 ADSMATHCrossRef
23.
Zurück zum Zitat Choi DT, Chou YT (2001) Vibration analysis of elastically supported turbo machinery blades by the modified differential quadrature methods. J Sound Vib 240(5):937–953 ADSCrossRef Choi DT, Chou YT (2001) Vibration analysis of elastically supported turbo machinery blades by the modified differential quadrature methods. J Sound Vib 240(5):937–953 ADSCrossRef
24.
Zurück zum Zitat Irie T, Yamada G, Takahashi I (1979) Determination of the steady state response of a Timoshenko beam of varying section by the use of the spline interpolation technique. J Sound Vib 63(2):287–295 ADSMATHCrossRef Irie T, Yamada G, Takahashi I (1979) Determination of the steady state response of a Timoshenko beam of varying section by the use of the spline interpolation technique. J Sound Vib 63(2):287–295 ADSMATHCrossRef
25.
Zurück zum Zitat Irie T, Yamada G, Takahashi I (1980) Vibration and stability of a non-uniform Timoshenko beam subjected to follower force. J Sound Vib 70(4):503–512 ADSMATHCrossRef Irie T, Yamada G, Takahashi I (1980) Vibration and stability of a non-uniform Timoshenko beam subjected to follower force. J Sound Vib 70(4):503–512 ADSMATHCrossRef
26.
Zurück zum Zitat Lee SY, Lin SM (1992) Exact vibration solutions for non-uniform Timoshenko beams with attachments. AIAA J 30(12):2930–2934 ADSMATHCrossRef Lee SY, Lin SM (1992) Exact vibration solutions for non-uniform Timoshenko beams with attachments. AIAA J 30(12):2930–2934 ADSMATHCrossRef
27.
Zurück zum Zitat Shahba A, Attarnejad R, Tavanaie Marvi M, Hajilar S (2011) Free vibration and stability of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Composites, Part B, Eng 42(4):801–808 CrossRef Shahba A, Attarnejad R, Tavanaie Marvi M, Hajilar S (2011) Free vibration and stability of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Composites, Part B, Eng 42(4):801–808 CrossRef
28.
Zurück zum Zitat Attarnejad R, Semnani SJ, Shahba A (2010) Basic displacement functions for free vibration analysis of non-prismatic Timoshenko beams. Finite Elem Anal Des 46:916–929 MathSciNetCrossRef Attarnejad R, Semnani SJ, Shahba A (2010) Basic displacement functions for free vibration analysis of non-prismatic Timoshenko beams. Finite Elem Anal Des 46:916–929 MathSciNetCrossRef
29.
Zurück zum Zitat Attarnejad R, Shahba A (2011) Basic displacement functions for centrifugally stiffened tapered beam. Int J Numer Methods Biomed Eng 27:1385–1397 MATH Attarnejad R, Shahba A (2011) Basic displacement functions for centrifugally stiffened tapered beam. Int J Numer Methods Biomed Eng 27:1385–1397 MATH
30.
Zurück zum Zitat Attarnejad R, Shahba A (2011) Basic displacement functions in analysis of centrifugally stiffened tapered beams. Arab J Sci Eng 36:841–853 CrossRef Attarnejad R, Shahba A (2011) Basic displacement functions in analysis of centrifugally stiffened tapered beams. Arab J Sci Eng 36:841–853 CrossRef
31.
Zurück zum Zitat Zhou JK (1986) Differential transformation and its application for electrical circuits. Huazhong University Press, China Zhou JK (1986) Differential transformation and its application for electrical circuits. Huazhong University Press, China
32.
Zurück zum Zitat Chen CK, Ju SP (2004) Application of differential transformation to transient advective-dispersive transport equation. J Appl Math Comput 155(1):25–38 MathSciNetMATHCrossRef Chen CK, Ju SP (2004) Application of differential transformation to transient advective-dispersive transport equation. J Appl Math Comput 155(1):25–38 MathSciNetMATHCrossRef
33.
Zurück zum Zitat Arikoglu A, Ozkol I (2004) Solution of boundary value problems for integro-differential equations by using differential transformation method. J Appl Math Comput 168(2):1145–1158 MathSciNet Arikoglu A, Ozkol I (2004) Solution of boundary value problems for integro-differential equations by using differential transformation method. J Appl Math Comput 168(2):1145–1158 MathSciNet
34.
Zurück zum Zitat Bert CW, Zeng H (2004) Analysis of axial vibration of compound bars by differential transformation method. J Sound Vib 275(3–5):641–647 ADSCrossRef Bert CW, Zeng H (2004) Analysis of axial vibration of compound bars by differential transformation method. J Sound Vib 275(3–5):641–647 ADSCrossRef
35.
Zurück zum Zitat Kaya MO (2006) Free vibration analysis of a rotating Timoshenko beam by differential transformation method. Aircr Eng Aerosp Technol 78:194–203 CrossRef Kaya MO (2006) Free vibration analysis of a rotating Timoshenko beam by differential transformation method. Aircr Eng Aerosp Technol 78:194–203 CrossRef
36.
Zurück zum Zitat Banerjee JR, Sobey AJ (2002) Energy expressions for rotating tapered Timoshenko beam. J Sound Vib 254(4):818–822 ADSCrossRef Banerjee JR, Sobey AJ (2002) Energy expressions for rotating tapered Timoshenko beam. J Sound Vib 254(4):818–822 ADSCrossRef
37.
Zurück zum Zitat Wilson EL (2002) Three dimensional static and dynamic analysis of structures. Computers and Structures, Berkeley Wilson EL (2002) Three dimensional static and dynamic analysis of structures. Computers and Structures, Berkeley
38.
Zurück zum Zitat Wakashima K, Hirano T, Nino M (1990) Space applications of advanced structural materials. ESA SP 303:97 Wakashima K, Hirano T, Nino M (1990) Space applications of advanced structural materials. ESA SP 303:97
39.
Zurück zum Zitat Nakamura T, Wang T, Sampath S (2000) Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater 48:4293–4306 CrossRef Nakamura T, Wang T, Sampath S (2000) Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater 48:4293–4306 CrossRef
40.
Zurück zum Zitat Ozgumus OO, Kaya MO (2010) Vibration analysis of a rotating tapered Timoshenko beam using DTM. Meccanica 45:33–42 MATHCrossRef Ozgumus OO, Kaya MO (2010) Vibration analysis of a rotating tapered Timoshenko beam using DTM. Meccanica 45:33–42 MATHCrossRef
41.
Zurück zum Zitat Attarnejad R, Shahba A (2011) Dynamic displacement functions in free vibration analysis of centrifugally stiffened tapered beams. Meccanica 46(6):1267–1281 MathSciNetCrossRef Attarnejad R, Shahba A (2011) Dynamic displacement functions in free vibration analysis of centrifugally stiffened tapered beams. Meccanica 46(6):1267–1281 MathSciNetCrossRef
42.
Zurück zum Zitat Tang B (2008) Combined dynamic stiffness matrix and precise time integration method for transient forced vibration response analysis of beams—short communication. J Sound Vib 309:868–876 ADSCrossRef Tang B (2008) Combined dynamic stiffness matrix and precise time integration method for transient forced vibration response analysis of beams—short communication. J Sound Vib 309:868–876 ADSCrossRef
43.
Zurück zum Zitat Zhong WX, Williams FW (1994) A precise time step integration method. Proc IME C J Mech Eng Sci 208:427–430 CrossRef Zhong WX, Williams FW (1994) A precise time step integration method. Proc IME C J Mech Eng Sci 208:427–430 CrossRef
44.
Zurück zum Zitat Wang CM, Wang CY, Reddy JN (2005) Exact solutions for buckling of structural members. CRC Press, Boca Raton Wang CM, Wang CY, Reddy JN (2005) Exact solutions for buckling of structural members. CRC Press, Boca Raton
45.
Zurück zum Zitat Hodges DH, Rutkowski MJ (1981) From vibration analysis of rotating beam by a variable order finite element method. AIAA J 19:1459–1466 ADSMATHCrossRef Hodges DH, Rutkowski MJ (1981) From vibration analysis of rotating beam by a variable order finite element method. AIAA J 19:1459–1466 ADSMATHCrossRef
46.
Zurück zum Zitat Zarrinzadeh H, Attarnejad R, Shahba A (2012) Free vibration of rotating axially functionally graded tapered beams. Proc IME G J Aero Eng 226(4):363–379 CrossRef Zarrinzadeh H, Attarnejad R, Shahba A (2012) Free vibration of rotating axially functionally graded tapered beams. Proc IME G J Aero Eng 226(4):363–379 CrossRef
47.
Zurück zum Zitat Ozgumus OO, Kaya MO (2006) Flapwise bending vibration analysis of double tapered rotating Euler-Bernoulli beam by using the differential transform method. Meccanica 41:661–670 MATHCrossRef Ozgumus OO, Kaya MO (2006) Flapwise bending vibration analysis of double tapered rotating Euler-Bernoulli beam by using the differential transform method. Meccanica 41:661–670 MATHCrossRef
49.
Zurück zum Zitat Huang Y, Li XF (2011) Buckling analysis of nonuniform and axially graded columns with varying flexural rigidity. ASCE J Eng Mech 137(1):73–81 CrossRef Huang Y, Li XF (2011) Buckling analysis of nonuniform and axially graded columns with varying flexural rigidity. ASCE J Eng Mech 137(1):73–81 CrossRef
50.
Zurück zum Zitat Rajasekaran S (2012) Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods. Appl Math Model. doi:10.1016/j.apm.2012.09.024 Rajasekaran S (2012) Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods. Appl Math Model. doi:10.​1016/​j.​apm.​2012.​09.​024
51.
Zurück zum Zitat Shahba A, Rajasekaran S (2012) Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials. Appl Math Model 36:3094–3111 MathSciNetMATHCrossRef Shahba A, Rajasekaran S (2012) Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials. Appl Math Model 36:3094–3111 MathSciNetMATHCrossRef
Metadaten
Titel
Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach
verfasst von
S. Rajasekaran
Publikationsdatum
01.07.2013
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 5/2013
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-012-9651-1

Weitere Artikel der Ausgabe 5/2013

Meccanica 5/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.