Skip to main content
Erschienen in: Meccanica 3/2014

01.03.2014

Cooling of an electronic board situated in various configurations inside an enclosure: lattice Boltzmann method

verfasst von: Mohsen Nazari, Sepideh Ramzani

Erschienen in: Meccanica | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Natural convection heat transfer in a square cavity induced by heated electronic board (as a thin plate at constant temperature) is investigated using the lattice Boltzmann method. Lattice Boltzmann simulation of natural convective heat transfer in a cavity in the presence of internal straight obstacle has not been considered completely in the literature and this challenge is generally considered to be an open research topic that may require more study. The present work is an extension to our previous paper (see Nazari and Ramzani in Modares. Mech. Eng. 11(2):119–133, 2011) in which the effects of position and dimensions of obstacle on the flow pattern and heat transfer rate are completely studied. A suitable forcing term is represented in the Boltzmann equation. With the representation, the Navier–Stokes equation can be derived from the lattice Boltzmann equation through the Chapman-Enskog expansion. Top and bottom of the cavity are adiabatic; the two vertical walls of the cavity have constant temperatures lower than the plate’s temperature. The study is performed for different values of Grashof number ranging from 103 to 105 for different aspect ratios and position of heated plate. The effect of the position and aspect ratio of heated plate on heat transfer are discussed and the position of the obstacle in which the maximum rate of heat transfer is investigated in both vertical and horizontal situation. The obtained results of the lattice Boltzmann method are validated with those presented in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nazari M, Ramzani S (2011) Natural convection in a square cavity with a heated obstacle using lattice Boltzmann method. Modares Mech Eng 11(2):119–133 Nazari M, Ramzani S (2011) Natural convection in a square cavity with a heated obstacle using lattice Boltzmann method. Modares Mech Eng 11(2):119–133
2.
Zurück zum Zitat Refai AG, Yovanovich MM (1991) Influence of discrete heat source location on natural convection heat transfer in a vertical square enclosure. J Electron Packag 113(3):268–274 CrossRef Refai AG, Yovanovich MM (1991) Influence of discrete heat source location on natural convection heat transfer in a vertical square enclosure. J Electron Packag 113(3):268–274 CrossRef
3.
Zurück zum Zitat Nelson JEB, Balakrishnan AR, Murthy SS (1999) Experiments on stratified chilled water tanks. Int J Refrig 22(3):216–234 CrossRef Nelson JEB, Balakrishnan AR, Murthy SS (1999) Experiments on stratified chilled water tanks. Int J Refrig 22(3):216–234 CrossRef
4.
Zurück zum Zitat Oliveski RDC, Krenzinger A, Vielmo HA (2003) Cooling of cylindrical vertical tank submitted to natural internal convection. Int J Heat Mass Transf 46(11):2015–2026 CrossRef Oliveski RDC, Krenzinger A, Vielmo HA (2003) Cooling of cylindrical vertical tank submitted to natural internal convection. Int J Heat Mass Transf 46(11):2015–2026 CrossRef
5.
Zurück zum Zitat Chen T-H, Chen L-Y (2007) Study of buoyancy-induced flows subjected to partially heated sources on the left and bottom walls in a square enclosure. Int J Therm Sci 46:1219–1231 CrossRef Chen T-H, Chen L-Y (2007) Study of buoyancy-induced flows subjected to partially heated sources on the left and bottom walls in a square enclosure. Int J Therm Sci 46:1219–1231 CrossRef
6.
Zurück zum Zitat Cheikh NB, Beya BB, Lili T (2007) influence of thermal boundary conditions on natural convection in a square enclosure partially heated from below. Int Commun Heat Mass Transf 34:369–379 CrossRef Cheikh NB, Beya BB, Lili T (2007) influence of thermal boundary conditions on natural convection in a square enclosure partially heated from below. Int Commun Heat Mass Transf 34:369–379 CrossRef
7.
Zurück zum Zitat Bazylak A, Djilali N, Sinton D (2007) Natural convection with distributed heat source modulation. Int J Heat Mass Transf 50:1649–1655 CrossRefMATH Bazylak A, Djilali N, Sinton D (2007) Natural convection with distributed heat source modulation. Int J Heat Mass Transf 50:1649–1655 CrossRefMATH
8.
Zurück zum Zitat Banerjee S, Mukhopadhyay A, Sen S, Ganguly R (2008) Natural convection in a bi-heater configuration of passive electronic cooling. Int J Therm Sci 47:1516–1527 CrossRef Banerjee S, Mukhopadhyay A, Sen S, Ganguly R (2008) Natural convection in a bi-heater configuration of passive electronic cooling. Int J Therm Sci 47:1516–1527 CrossRef
9.
Zurück zum Zitat Baïri A, García de María JM, Laraqi N, Alilat N (2008) Free convection generated in an enclosure by alternate heated bands. Experimental and numerical study adapted to electronics thermal control. Int J Heat Fluid Flow 29:1337–1346 CrossRef Baïri A, García de María JM, Laraqi N, Alilat N (2008) Free convection generated in an enclosure by alternate heated bands. Experimental and numerical study adapted to electronics thermal control. Int J Heat Fluid Flow 29:1337–1346 CrossRef
10.
Zurück zum Zitat Angeli D, Levoni P, Barozzi GS (2008) Numerical predictions for stable buoyant regimes within a square cavity containing a heated horizontal cylinder. Int J Heat Mass Transf 51:553–565 CrossRefMATH Angeli D, Levoni P, Barozzi GS (2008) Numerical predictions for stable buoyant regimes within a square cavity containing a heated horizontal cylinder. Int J Heat Mass Transf 51:553–565 CrossRefMATH
11.
Zurück zum Zitat Wu W, Ching CY (2010) Laminar natural convection in an air-filled square cavity with partitions on the top wall. Int J Heat Mass Transf 53:1759–1772 CrossRef Wu W, Ching CY (2010) Laminar natural convection in an air-filled square cavity with partitions on the top wall. Int J Heat Mass Transf 53:1759–1772 CrossRef
12.
Zurück zum Zitat Sankar M, Park Y, Lopez JM, Do Y (2011) Numerical study of natural convection in a vertical porous annulus with discrete heating. Int J Heat Mass Transf 54:1493–1505 CrossRefMATH Sankar M, Park Y, Lopez JM, Do Y (2011) Numerical study of natural convection in a vertical porous annulus with discrete heating. Int J Heat Mass Transf 54:1493–1505 CrossRefMATH
13.
Zurück zum Zitat Tahavvor AR, Yaghoubi M (2012) Analysis of natural convection from a column of cold horizontal cylinders using artificial neural network. Appl Math Model 36:3176–3188 CrossRef Tahavvor AR, Yaghoubi M (2012) Analysis of natural convection from a column of cold horizontal cylinders using artificial neural network. Appl Math Model 36:3176–3188 CrossRef
14.
Zurück zum Zitat D’Orazio A, Fontana L (2010) Experimental study of free convection from a pair of vertical arrays of horizontal cylinders at very low Rayleigh numbers. Int J Heat Mass Transf 53:3131–3142 CrossRef D’Orazio A, Fontana L (2010) Experimental study of free convection from a pair of vertical arrays of horizontal cylinders at very low Rayleigh numbers. Int J Heat Mass Transf 53:3131–3142 CrossRef
15.
Zurück zum Zitat Yousefi T, Ashjaee M (2007) Experimental study of natural convection heat transfer from vertical array of isothermal horizontal elliptic cylinders. Exp Therm Fluid Sci 32:240–248 CrossRef Yousefi T, Ashjaee M (2007) Experimental study of natural convection heat transfer from vertical array of isothermal horizontal elliptic cylinders. Exp Therm Fluid Sci 32:240–248 CrossRef
16.
Zurück zum Zitat Yousefi T, Paknezhad M, Ashjaee M, Yazdani S (2009) Effects of confining walls on heat transfer from a vertical array of isothermal horizontal elliptic cylinders. Exp Therm Fluid Sci 33:983–990 CrossRef Yousefi T, Paknezhad M, Ashjaee M, Yazdani S (2009) Effects of confining walls on heat transfer from a vertical array of isothermal horizontal elliptic cylinders. Exp Therm Fluid Sci 33:983–990 CrossRef
17.
Zurück zum Zitat Huang K (1987) Thermodynamics and statistical mechanics, 2nd edn. Wiley, New York Huang K (1987) Thermodynamics and statistical mechanics, 2nd edn. Wiley, New York
18.
Zurück zum Zitat Jami M, Mezrhab A, Bouzidi M, Lallemand P (2006) Lattice–Boltzmann computation of natural convection in a partitioned enclosure with inclined partitions attached to its hot wall. Physica A 368:481–494 ADSCrossRef Jami M, Mezrhab A, Bouzidi M, Lallemand P (2006) Lattice–Boltzmann computation of natural convection in a partitioned enclosure with inclined partitions attached to its hot wall. Physica A 368:481–494 ADSCrossRef
19.
Zurück zum Zitat Jami M, Mezrhab A, Bouzidi M, Lallemand P (2007) Lattice Boltzmann method applied to the laminar natural convection in an enclosure with a heat-generating cylinder conducting body. Int J Therm Sci 46:38–47 CrossRef Jami M, Mezrhab A, Bouzidi M, Lallemand P (2007) Lattice Boltzmann method applied to the laminar natural convection in an enclosure with a heat-generating cylinder conducting body. Int J Therm Sci 46:38–47 CrossRef
20.
Zurück zum Zitat Mezrhab A, Bouzidi M, Lallemand P (2004) Hybrid Lattice–Boltzmann finite-difference simulation of convective flows. Comput Fluids 33:623–641 CrossRefMATH Mezrhab A, Bouzidi M, Lallemand P (2004) Hybrid Lattice–Boltzmann finite-difference simulation of convective flows. Comput Fluids 33:623–641 CrossRefMATH
21.
Zurück zum Zitat Mohamad AA, El-Ganaoui M, Bennacer R (2009) Lattice Boltzmann simulation of natural convection in an open ended cavity. Int J Therm Sci 48:1870–1875 CrossRef Mohamad AA, El-Ganaoui M, Bennacer R (2009) Lattice Boltzmann simulation of natural convection in an open ended cavity. Int J Therm Sci 48:1870–1875 CrossRef
22.
Zurück zum Zitat D’Orazio A, Corcione M, Celata GP (2004) Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition. Int J Therm Sci 43:575–586 CrossRef D’Orazio A, Corcione M, Celata GP (2004) Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition. Int J Therm Sci 43:575–586 CrossRef
23.
Zurück zum Zitat Dixit HN, Babu V (2006) Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. Int J Heat Mass Transf 49:727–739 CrossRefMATH Dixit HN, Babu V (2006) Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. Int J Heat Mass Transf 49:727–739 CrossRefMATH
24.
Zurück zum Zitat Karimipour A, Nezhad AH, D’Orazio A, Shirani E (2012) Investigation of the gravity effects on the mixed convection heat transfer in a micro channel using lattice Boltzmann method. Int J Therm Sci 54:142–152 CrossRef Karimipour A, Nezhad AH, D’Orazio A, Shirani E (2012) Investigation of the gravity effects on the mixed convection heat transfer in a micro channel using lattice Boltzmann method. Int J Therm Sci 54:142–152 CrossRef
25.
Zurück zum Zitat Kuznik F, Vareillesa J, Rusaouena G, Kraussa G (2007) A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity. Int J Heat Fluid Flow 28(5):862–870 CrossRef Kuznik F, Vareillesa J, Rusaouena G, Kraussa G (2007) A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity. Int J Heat Fluid Flow 28(5):862–870 CrossRef
26.
Zurück zum Zitat Frisch U, Hasslacher B, Pameau Y (1986) Lattice-gas automata for Navier–Stokes equation. Phys Rev Lett 56:1505–1508 ADSCrossRef Frisch U, Hasslacher B, Pameau Y (1986) Lattice-gas automata for Navier–Stokes equation. Phys Rev Lett 56:1505–1508 ADSCrossRef
27.
Zurück zum Zitat Frisch U (1991) Relation between the lattice Boltzmann-equation and the Navier–Stokes equations. Physica D 47(1–2):231–232 ADSCrossRefMathSciNet Frisch U (1991) Relation between the lattice Boltzmann-equation and the Navier–Stokes equations. Physica D 47(1–2):231–232 ADSCrossRefMathSciNet
28.
Zurück zum Zitat McNamara G, Zanetti G (1988) Use of the Boltzmann equation to simulate the lattice gas automata. Phys Rev Lett 61:2332–2335 ADSCrossRef McNamara G, Zanetti G (1988) Use of the Boltzmann equation to simulate the lattice gas automata. Phys Rev Lett 61:2332–2335 ADSCrossRef
29.
Zurück zum Zitat Higuera FJ, Jimenez J (1989) Boltzman approach to lattice-gas simulation. Europhys Lett 9:663–668 ADSCrossRef Higuera FJ, Jimenez J (1989) Boltzman approach to lattice-gas simulation. Europhys Lett 9:663–668 ADSCrossRef
30.
Zurück zum Zitat Chen HD, Chen SY, Matthaeus WH (1992) Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method. Phys Rev A 45(8):5339–5342 ADSCrossRef Chen HD, Chen SY, Matthaeus WH (1992) Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method. Phys Rev A 45(8):5339–5342 ADSCrossRef
31.
Zurück zum Zitat Higuera FJ, Succi S (1989) Simulating the flow around a circular-cylinder with a lattice Boltzmann-equation. Europhys Lett 8(6):517–521 ADSCrossRef Higuera FJ, Succi S (1989) Simulating the flow around a circular-cylinder with a lattice Boltzmann-equation. Europhys Lett 8(6):517–521 ADSCrossRef
32.
Zurück zum Zitat Succi S, Foti E, Higuera F (1989) 3-Dimensional flows in complex geometries with the lattice Boltzmann method. Europhys Lett 10(5):433–438 ADSCrossRef Succi S, Foti E, Higuera F (1989) 3-Dimensional flows in complex geometries with the lattice Boltzmann method. Europhys Lett 10(5):433–438 ADSCrossRef
33.
Zurück zum Zitat Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford MATH Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford MATH
34.
Zurück zum Zitat Teixeira C, Chen H, Freed DM (2000) Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation. Comput Phys Commun 129(1/3):207–226 ADSCrossRefMATH Teixeira C, Chen H, Freed DM (2000) Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation. Comput Phys Commun 129(1/3):207–226 ADSCrossRefMATH
35.
Zurück zum Zitat Shan X (1997) Simulation of Rayleigh–Benard convection using a lattice Boltzmann method. Phys Rev E 55:2780–2788 ADSCrossRef Shan X (1997) Simulation of Rayleigh–Benard convection using a lattice Boltzmann method. Phys Rev E 55:2780–2788 ADSCrossRef
36.
Zurück zum Zitat He X, Chen S, Doolen GD (1998) A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys 146(1):282–300 ADSCrossRefMATHMathSciNet He X, Chen S, Doolen GD (1998) A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys 146(1):282–300 ADSCrossRefMATHMathSciNet
37.
Zurück zum Zitat Bhatnagggar PL, Groos EP, Krook M (1954) A model for collision processes in gases small amplitude processes in charged and neutral one-component systems. Phys Rev A 94:511–525 ADSCrossRef Bhatnagggar PL, Groos EP, Krook M (1954) A model for collision processes in gases small amplitude processes in charged and neutral one-component systems. Phys Rev A 94:511–525 ADSCrossRef
38.
Zurück zum Zitat Luo LS (1993) PhD thesis, Georgia Institute of Technology. Lattice-Gas Automata and Lattice Boltzmann Equations for two-dimensional hydrodynamics fluid flow Luo LS (1993) PhD thesis, Georgia Institute of Technology. Lattice-Gas Automata and Lattice Boltzmann Equations for two-dimensional hydrodynamics fluid flow
39.
Zurück zum Zitat Frisch U, d’Humieres D, Hasslacher B, Lallemand P, Pomeau Y, Rivet JP (1987) Lattice gas hydrodynamics in two and three dimensions. Complex Syst 1(4):633–647 MathSciNet Frisch U, d’Humieres D, Hasslacher B, Lallemand P, Pomeau Y, Rivet JP (1987) Lattice gas hydrodynamics in two and three dimensions. Complex Syst 1(4):633–647 MathSciNet
41.
Zurück zum Zitat Kandaswamy P, Lee J, Abdul Hakeem AK (2007) Natural convection in a square cavity in the presence of heated plate. Nonlinear Anal Model Control 12(2):203–212 Kandaswamy P, Lee J, Abdul Hakeem AK (2007) Natural convection in a square cavity in the presence of heated plate. Nonlinear Anal Model Control 12(2):203–212
Metadaten
Titel
Cooling of an electronic board situated in various configurations inside an enclosure: lattice Boltzmann method
verfasst von
Mohsen Nazari
Sepideh Ramzani
Publikationsdatum
01.03.2014
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 3/2014
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-013-9817-5

Weitere Artikel der Ausgabe 3/2014

Meccanica 3/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.