Skip to main content
Erschienen in: Meccanica 5/2014

01.05.2014

Effect of rotation on ferromagnetic porous convection with a thermal non-equilibrium model

verfasst von: I. S. Shivakumara, R. Gangadhara Reddy, M. Ravisha, Jinho Lee

Erschienen in: Meccanica | Ausgabe 5/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of rotation on the onset of thermal convection in a horizontal layer of ferrofluid saturated Brinkman porous medium is investigated in the presence of a uniform vertical magnetic field using a local thermal non-equilibrium (LTNE) model. A two-field model for temperature representing the solid and fluid phases separately is used for energy equation. The condition for the occurrence of stationary and oscillatory convection is obtained analytically. The stability of the system has been analyzed when the magnetic and buoyancy forces are acting together as well as in isolation and the similarities as well as differences between the two are highlighted. In contrast to the non-rotating case, it is shown that decrease in the Darcy number Da and an increase in the ratio of effective viscosity to fluid viscosity Λ is to hasten the onset of stationary convection at high rotation rates and a coupling between these two parameters is identified in destabilizing the system. Asymptotic solutions for both small and large values of scaled interphase heat transfer coefficient H t are presented and compared with those computed numerically. Besides, the influence of magnetic parameters and also parameters representing LTNE on the stability of the system is discussed and the veracity of LTNE model over the LTE model is also analyzed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge, London Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge, London
2.
Zurück zum Zitat Berkovsky BM, Medvedev VF, Krakov MS (1993) Magnetic fluids, engineering applications. Oxford University Press, New York Berkovsky BM, Medvedev VF, Krakov MS (1993) Magnetic fluids, engineering applications. Oxford University Press, New York
3.
Zurück zum Zitat Blums E, Cebers A, Maiorov MM (1997) Magnetic fluids. de Gruyter, New York Blums E, Cebers A, Maiorov MM (1997) Magnetic fluids. de Gruyter, New York
4.
Zurück zum Zitat Hergt R, Andrä W, Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limitations of hypothermia using magnetite fine particles. IEEE Trans Magn 34:3745–3754 CrossRefADS Hergt R, Andrä W, Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limitations of hypothermia using magnetite fine particles. IEEE Trans Magn 34:3745–3754 CrossRefADS
5.
Zurück zum Zitat Alexiou C, Arnold W, Hulin P, Klein R, Schmidt A, Bergemann C, Parak FG (2001) Therapeutic efficacy of ferrofluid bound anticancer agent. Magnetohydrodynamics 37:318–322 ADS Alexiou C, Arnold W, Hulin P, Klein R, Schmidt A, Bergemann C, Parak FG (2001) Therapeutic efficacy of ferrofluid bound anticancer agent. Magnetohydrodynamics 37:318–322 ADS
6.
Zurück zum Zitat Ganguly R, Sen S, Puri IK (2004) Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J Magn Magn Mater 271:63–73 CrossRefADS Ganguly R, Sen S, Puri IK (2004) Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J Magn Magn Mater 271:63–73 CrossRefADS
7.
Zurück zum Zitat Odenbach S (2004) Recent progress in magnetic fluid research. J Phys Condens Matter 16:R1135–R1150 CrossRefADS Odenbach S (2004) Recent progress in magnetic fluid research. J Phys Condens Matter 16:R1135–R1150 CrossRefADS
8.
Zurück zum Zitat Rosensweig RE, Zahn M, Volger T (1978) Stabilization of fluid penetration through a porous medium using magnetizable fluids. In: Berkovsky B (ed) Thermomechanics of magnetic fluids. Hemisphere, Washington, pp 195–211 Rosensweig RE, Zahn M, Volger T (1978) Stabilization of fluid penetration through a porous medium using magnetizable fluids. In: Berkovsky B (ed) Thermomechanics of magnetic fluids. Hemisphere, Washington, pp 195–211
9.
Zurück zum Zitat Zhan M, Rosensweig RE (1980) Stability of magnetic fluid penetration through a porous medium with uniform magnetic field oblique to the interface. IEEE Trans Magn 16:275–282 CrossRefADS Zhan M, Rosensweig RE (1980) Stability of magnetic fluid penetration through a porous medium with uniform magnetic field oblique to the interface. IEEE Trans Magn 16:275–282 CrossRefADS
10.
Zurück zum Zitat Vaidyanathan G, Sekar R, Balasubramanian R (1991) Ferroconvective instability of fluids saturating a porous medium. Int J Eng Sci 29:1259–1267 CrossRefMATH Vaidyanathan G, Sekar R, Balasubramanian R (1991) Ferroconvective instability of fluids saturating a porous medium. Int J Eng Sci 29:1259–1267 CrossRefMATH
11.
Zurück zum Zitat Borglin SE, Mordis J, Oldenburg CM (2000) Experimental studies of the flow of ferrofluid in porous media. Transp Porous Media 41:61–80 CrossRef Borglin SE, Mordis J, Oldenburg CM (2000) Experimental studies of the flow of ferrofluid in porous media. Transp Porous Media 41:61–80 CrossRef
12.
Zurück zum Zitat Sunil Mahajan A (2009) Nonlinear stability analysis for thermoconvective magnetized ferrofluid saturating a porous medium. Transp Porous Media 76:327–343 CrossRefMathSciNet Sunil Mahajan A (2009) Nonlinear stability analysis for thermoconvective magnetized ferrofluid saturating a porous medium. Transp Porous Media 76:327–343 CrossRefMathSciNet
13.
Zurück zum Zitat Shivakumara IS, Nanjundappa CE, Ravisha M (2008) Thermomagnetic convection in a magnetic nanofluids fluid saturated porous medium. Int J Appl Math Eng Sci 2(2):157–170 Shivakumara IS, Nanjundappa CE, Ravisha M (2008) Thermomagnetic convection in a magnetic nanofluids fluid saturated porous medium. Int J Appl Math Eng Sci 2(2):157–170
14.
Zurück zum Zitat Shivakumara IS, Nanjundappa CE, Ravisha M (2009) Effect of boundary conditions on the onset of thermomagnetic convection in a ferrofluid saturated porous medium. J Heat Transf 131:101003 CrossRef Shivakumara IS, Nanjundappa CE, Ravisha M (2009) Effect of boundary conditions on the onset of thermomagnetic convection in a ferrofluid saturated porous medium. J Heat Transf 131:101003 CrossRef
15.
Zurück zum Zitat Nanjundappa CE, Shivakumara IS, Ravisha M (2010) The onset of buoyancy-driven convection in a ferromagnetic fluid saturated porous medium. Meccanica 45:213–226 CrossRefMATHMathSciNet Nanjundappa CE, Shivakumara IS, Ravisha M (2010) The onset of buoyancy-driven convection in a ferromagnetic fluid saturated porous medium. Meccanica 45:213–226 CrossRefMATHMathSciNet
16.
Zurück zum Zitat Rees DAS, Pop I (2005) Local thermal non-equilibrium in porous medium convection. In: Ingham DB, Pop I (eds) Transp phenomena in porous med, vol III. Elsevier, Oxford, pp 147–173 Rees DAS, Pop I (2005) Local thermal non-equilibrium in porous medium convection. In: Ingham DB, Pop I (eds) Transp phenomena in porous med, vol III. Elsevier, Oxford, pp 147–173
17.
Zurück zum Zitat Nield DA, Bejan A (2006) Convection in porous media, 3rd edn. Springer, New York MATH Nield DA, Bejan A (2006) Convection in porous media, 3rd edn. Springer, New York MATH
18.
Zurück zum Zitat Shivakumara IS, Mamatha AL, Ravisha M (2010) Boundary and thermal non-equilibrium effects on the onset of Darcy–Brinkman convection in a porous layer. J Eng Math 67:317–328 CrossRefMATHMathSciNet Shivakumara IS, Mamatha AL, Ravisha M (2010) Boundary and thermal non-equilibrium effects on the onset of Darcy–Brinkman convection in a porous layer. J Eng Math 67:317–328 CrossRefMATHMathSciNet
19.
Zurück zum Zitat Sunil PS, Mahajan A (2010) Nonlinear ferroconvection in a porous layer using a thermal nonequilibrium model. Top Rev Porous Med Int J 1:105–121 Sunil PS, Mahajan A (2010) Nonlinear ferroconvection in a porous layer using a thermal nonequilibrium model. Top Rev Porous Med Int J 1:105–121
20.
Zurück zum Zitat Lee J, Shivakumara IS, Ravisha M (2011) Effect of thermal non-equilibrium on convective instability in a ferromagnetic fluid saturated porous medium. Transp Porous Media 86:103–124 CrossRefMathSciNet Lee J, Shivakumara IS, Ravisha M (2011) Effect of thermal non-equilibrium on convective instability in a ferromagnetic fluid saturated porous medium. Transp Porous Media 86:103–124 CrossRefMathSciNet
21.
Zurück zum Zitat Shivakumara IS, Lee J, Ravisha M, Gangadhara Reddy R (2011) The onset of Brinkman ferroconvection using a thermal non-equilibrium model. Int J Heat Mass Transf 54:2116–2125 CrossRefMATH Shivakumara IS, Lee J, Ravisha M, Gangadhara Reddy R (2011) The onset of Brinkman ferroconvection using a thermal non-equilibrium model. Int J Heat Mass Transf 54:2116–2125 CrossRefMATH
22.
Zurück zum Zitat Shivakumara IS, Lee J, Ravisha M, Gangadhara Reddy R (2012) The effects of local thermal nonequilibrium and MFD viscosity on the onset of Brinkman ferroconvection. Meccanica 47:1359–1378 CrossRefMathSciNet Shivakumara IS, Lee J, Ravisha M, Gangadhara Reddy R (2012) The effects of local thermal nonequilibrium and MFD viscosity on the onset of Brinkman ferroconvection. Meccanica 47:1359–1378 CrossRefMathSciNet
23.
Zurück zum Zitat Sekar R, Vaidyanathan G, Ramanathan A (1993) The ferroconvection in fluids saturating a rotating densely packed porous medium. Int J Eng Sci 31(2):241–250 CrossRefMATH Sekar R, Vaidyanathan G, Ramanathan A (1993) The ferroconvection in fluids saturating a rotating densely packed porous medium. Int J Eng Sci 31(2):241–250 CrossRefMATH
24.
Zurück zum Zitat Vaidyanathan G, Sekar R, Vasanthakumari R, Ramanathan A (2002) The effect of magnetic field dependent viscosity on ferroconvection in a rotating sparsely distributed porous medium. J Magn Magn Mater 250:65–76 CrossRefADS Vaidyanathan G, Sekar R, Vasanthakumari R, Ramanathan A (2002) The effect of magnetic field dependent viscosity on ferroconvection in a rotating sparsely distributed porous medium. J Magn Magn Mater 250:65–76 CrossRefADS
25.
Zurück zum Zitat Sunil PS, Mahajan A (2009) A nonlinear stability analysis for rotating magnetized ferrofluid heated from below saturating a porous medium. Z Angew Math Phys 60:344–362 CrossRefMATHMathSciNet Sunil PS, Mahajan A (2009) A nonlinear stability analysis for rotating magnetized ferrofluid heated from below saturating a porous medium. Z Angew Math Phys 60:344–362 CrossRefMATHMathSciNet
26.
Zurück zum Zitat Shivakumara IS, Lee J, Nanjundappa CE, Ravisha M (2011) Ferromagnetic convection in a rotating ferrofluid saturated porous layer. Transp Porous Media 87:251–273 CrossRefMathSciNet Shivakumara IS, Lee J, Nanjundappa CE, Ravisha M (2011) Ferromagnetic convection in a rotating ferrofluid saturated porous layer. Transp Porous Media 87:251–273 CrossRefMathSciNet
27.
28.
Zurück zum Zitat Malashetty MS, Mahantesh S, Kulkarni S (2007) Thermal convection in a rotating porous layer using a thermal non-equilibrium model. Phys Fluids 19(5):054102 CrossRefADS Malashetty MS, Mahantesh S, Kulkarni S (2007) Thermal convection in a rotating porous layer using a thermal non-equilibrium model. Phys Fluids 19(5):054102 CrossRefADS
29.
Zurück zum Zitat Sunil PS, Mahajan A (2011) Onset of Darcy–Brinkman ferroconvection in a rotating porous layer using a thermal non-equilibrium model: a nonlinear stability analysis. Transp Porous Media 88:421–439 CrossRefMathSciNet Sunil PS, Mahajan A (2011) Onset of Darcy–Brinkman ferroconvection in a rotating porous layer using a thermal non-equilibrium model: a nonlinear stability analysis. Transp Porous Media 88:421–439 CrossRefMathSciNet
30.
31.
Zurück zum Zitat Shivakumara IS, Savitha MN, Krishna B, Chavaraddi DN (2009) Bifurcation analysis for thermal convection in a rotating porous layer. Meccanica 44:225–238 CrossRefMATH Shivakumara IS, Savitha MN, Krishna B, Chavaraddi DN (2009) Bifurcation analysis for thermal convection in a rotating porous layer. Meccanica 44:225–238 CrossRefMATH
32.
Zurück zum Zitat Palm E, Tyvand PA (1984) Thermal convection in a rotating porous layer. Z Angew Math Phys 35:122–133 CrossRefMATH Palm E, Tyvand PA (1984) Thermal convection in a rotating porous layer. Z Angew Math Phys 35:122–133 CrossRefMATH
33.
Zurück zum Zitat Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford University Press, London MATH Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford University Press, London MATH
Metadaten
Titel
Effect of rotation on ferromagnetic porous convection with a thermal non-equilibrium model
verfasst von
I. S. Shivakumara
R. Gangadhara Reddy
M. Ravisha
Jinho Lee
Publikationsdatum
01.05.2014
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 5/2014
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-013-9859-8

Weitere Artikel der Ausgabe 5/2014

Meccanica 5/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.