Skip to main content
Erschienen in: Meccanica 7/2014

01.07.2014

Dynamic multi-axial behavior of shape memory alloy nanowires with coupled thermo-mechanical phase-field models

verfasst von: R. P. Dhote, R. N. V. Melnik, J. Zu

Erschienen in: Meccanica | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this paper is to provide new insight into the dynamic thermo-mechanical properties of shape memory alloy (SMA) nanowires subjected to multi-axial loadings. The phase-field model with Ginzburg–Landau energy, having appropriate strain based order parameter and strain gradient energy contributions, is used to study the martensitic transformations in the representative 2D square-to-rectangular phase transformations for FePd SMA nanowires. The microstructure and mechanical behavior of martensitic transformations in SMA nanostructures have been studied extensively in the literature for uniaxial loading, usually under isothermal assumptions. The developed model describes the martensitic transformations in SMAs based on the equations for momentum and energy with bi-directional coupling via strain, strain rate and temperature. These governing equations of the thermo-mechanical model are numerically solved simultaneously for different external loadings starting with the evolved twinned and austenitic phases. We observed a strong influence of multi-axial loading on dynamic thermo-mechanical properties of SMA nanowires. Notably, the multi-axial loadings are quite distinct as compared to the uniaxial loading case, and the particular axial stress level is reached at a lower strain. The SMA behaviors predicted by the model are in qualitative agreements with experimental and numerical results published in the literature. The new results reported here on the nanowire response to multi-axial loadings provide new physical insight into underlying phenomena and are important, for example, in developing better SMA-based MEMS and NEMS devices

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shu S, Lagoudas D, Hughes D, Wen J (1997) Modeling of a flexible beam actuated by shape memory alloy wires. Smart Mater Struct 6:265ADSCrossRef Shu S, Lagoudas D, Hughes D, Wen J (1997) Modeling of a flexible beam actuated by shape memory alloy wires. Smart Mater Struct 6:265ADSCrossRef
2.
Zurück zum Zitat Kahn H, Huff M, Heuer A (1998) The TiNi shape-memory alloy and its applications for MEMS. J Micromech Microeng 8:213CrossRef Kahn H, Huff M, Heuer A (1998) The TiNi shape-memory alloy and its applications for MEMS. J Micromech Microeng 8:213CrossRef
3.
Zurück zum Zitat Fu Y, Du H, Huang W, Zhang S, Hu M (2004) TiNi-based thin films in MEMS applications: a review. Sens Actuators A 112(2):395–408CrossRef Fu Y, Du H, Huang W, Zhang S, Hu M (2004) TiNi-based thin films in MEMS applications: a review. Sens Actuators A 112(2):395–408CrossRef
4.
Zurück zum Zitat Juan J, No M, Schuh C (2009) Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nature Nanotechnol 4(7):415–419ADSCrossRef Juan J, No M, Schuh C (2009) Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nature Nanotechnol 4(7):415–419ADSCrossRef
5.
Zurück zum Zitat Barcikowski S, Hahn A, Guggenheim M, Reimers K, Ostendorf A (2010) Biocompatibility of nanoactuators: stem cell growth on laser-generated Nickel–Titanium shape memory alloy nanoparticles. J Nanopart Res 12(5):1733–1742CrossRef Barcikowski S, Hahn A, Guggenheim M, Reimers K, Ostendorf A (2010) Biocompatibility of nanoactuators: stem cell growth on laser-generated Nickel–Titanium shape memory alloy nanoparticles. J Nanopart Res 12(5):1733–1742CrossRef
6.
Zurück zum Zitat Bayer BC, Sanjabi S, Baehtz C, Wirth CT, Esconjauregui S, Weatherup RS, Barber ZH, Hofmann S, Robertson J (2011) Carbon nanotube forest growth on NiTi shape memory alloy thin films for thermal actuation. Thin Solid Films 519(18):6126–6129 Bayer BC, Sanjabi S, Baehtz C, Wirth CT, Esconjauregui S, Weatherup RS, Barber ZH, Hofmann S, Robertson J (2011) Carbon nanotube forest growth on NiTi shape memory alloy thin films for thermal actuation. Thin Solid Films 519(18):6126–6129
7.
Zurück zum Zitat Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Qxford Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Qxford
8.
Zurück zum Zitat Smith R (2005) Smart material systems: model development, vol 32. Society for Industrial Mathematics, PhiladelphiaCrossRef Smith R (2005) Smart material systems: model development, vol 32. Society for Industrial Mathematics, PhiladelphiaCrossRef
9.
Zurück zum Zitat Lagoudas D, Brinson L, Patoor E (2006) Shape memory alloys, part II: modeling of polycrystals. Mech Mater 38(5–6):430–462CrossRef Lagoudas D, Brinson L, Patoor E (2006) Shape memory alloys, part II: modeling of polycrystals. Mech Mater 38(5–6):430–462CrossRef
10.
Zurück zum Zitat Lagoudas D (2008) Shape memory alloys: modeling and engineering applications. Springer, London Lagoudas D (2008) Shape memory alloys: modeling and engineering applications. Springer, London
11.
Zurück zum Zitat Yoneyama T, Miyazaki S (2008) Shape memory alloys for biomedical applications. Woodhead Publishing Yoneyama T, Miyazaki S (2008) Shape memory alloys for biomedical applications. Woodhead Publishing
12.
Zurück zum Zitat Otsuka K, Wayman C (1998) Shape memory materials. Cambridge University Press, New York Otsuka K, Wayman C (1998) Shape memory materials. Cambridge University Press, New York
13.
14.
Zurück zum Zitat Miyazaki S, Fu Y, Huang W (2009) Thin film shape memory alloys: fundamentals and device applications. Cambridge University Press, CambridgeCrossRef Miyazaki S, Fu Y, Huang W (2009) Thin film shape memory alloys: fundamentals and device applications. Cambridge University Press, CambridgeCrossRef
15.
Zurück zum Zitat Ozbulut O, Hurlebaus S, DesRoches R (2011) Seismic response control using shape memory alloys: a review. J Intell Mater Syst Struct 22(14):1531–1549CrossRef Ozbulut O, Hurlebaus S, DesRoches R (2011) Seismic response control using shape memory alloys: a review. J Intell Mater Syst Struct 22(14):1531–1549CrossRef
16.
Zurück zum Zitat Elahinia M, Hashemi M, Tabesh M, Bhaduri S (2011) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci Elahinia M, Hashemi M, Tabesh M, Bhaduri S (2011) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci
17.
Zurück zum Zitat Fang D, Lu W, Hwang K (1998) Pseudoelastic behavior of CuAINi single crystal under biaxial loading. Met Mater Int 4(4):702–706CrossRef Fang D, Lu W, Hwang K (1998) Pseudoelastic behavior of CuAINi single crystal under biaxial loading. Met Mater Int 4(4):702–706CrossRef
18.
Zurück zum Zitat Shan Y, Dodson J, Abraham S, Speich JE, Rao R, Leang KK (2007) A biaxial shape memory alloy actuated cell/tissue stretching system. In: ASME 2007 international mechanical engineering congress and exposition, American Society of Mechanical Engineers, pp. 161–169. Shan Y, Dodson J, Abraham S, Speich JE, Rao R, Leang KK (2007) A biaxial shape memory alloy actuated cell/tissue stretching system. In: ASME 2007 international mechanical engineering congress and exposition, American Society of Mechanical Engineers, pp. 161–169.
19.
Zurück zum Zitat Niendorf T, Lackmann J, Gorny B (2011) H. Maier, Scr Mater, In-situ characterization of martensite variant formation in Nickel-Titanium shape memory alloy under biaxial loading. Scripta Materialia Niendorf T, Lackmann J, Gorny B (2011) H. Maier, Scr Mater, In-situ characterization of martensite variant formation in Nickel-Titanium shape memory alloy under biaxial loading. Scripta Materialia
20.
Zurück zum Zitat Tokuda M, Petr S, Takakura M, Ye M (1995) Experimental study on performances in Cu-based shape memory alloy under multi-axial loading conditions. Mater Sci Res Int 1(4):260–265 Tokuda M, Petr S, Takakura M, Ye M (1995) Experimental study on performances in Cu-based shape memory alloy under multi-axial loading conditions. Mater Sci Res Int 1(4):260–265
21.
Zurück zum Zitat Sittner P, Hara Y, Tokuda M (1995) Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces. Metall Mater Trans A 26(11):2923–2935CrossRef Sittner P, Hara Y, Tokuda M (1995) Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces. Metall Mater Trans A 26(11):2923–2935CrossRef
22.
Zurück zum Zitat Lim T, McDowell D (1999) Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading. J Eng Mater Technol 121:9CrossRef Lim T, McDowell D (1999) Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading. J Eng Mater Technol 121:9CrossRef
23.
Zurück zum Zitat Bouvet C, Calloch S, Lexcellent C (2002) Mechanical behavior of a Cu–Al–Be shape memory alloy under multiaxial proportional and nonproportional loadings. J Eng Mater Technol 124:112CrossRef Bouvet C, Calloch S, Lexcellent C (2002) Mechanical behavior of a Cu–Al–Be shape memory alloy under multiaxial proportional and nonproportional loadings. J Eng Mater Technol 124:112CrossRef
24.
Zurück zum Zitat McNaney J, Imbeni V, Jung Y, Papadopoulos P, Ritchie R (2003) An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading. Mech Mater 35(10):969–986CrossRef McNaney J, Imbeni V, Jung Y, Papadopoulos P, Ritchie R (2003) An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading. Mech Mater 35(10):969–986CrossRef
25.
Zurück zum Zitat Lavernhe-Taillard K, Calloch S, Arbab-Chirani S, Lexcellent C (2009) Multiaxial shape memory effect and superelasticity. Strain 45(1):77–84CrossRef Lavernhe-Taillard K, Calloch S, Arbab-Chirani S, Lexcellent C (2009) Multiaxial shape memory effect and superelasticity. Strain 45(1):77–84CrossRef
26.
Zurück zum Zitat Grabe C, Bruhns O (2009) Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes. Int J Plast 25(3):513–545CrossRefMATH Grabe C, Bruhns O (2009) Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes. Int J Plast 25(3):513–545CrossRefMATH
27.
Zurück zum Zitat Birman V (1997) Review of mechanics of shape memory alloy structures. Appl Mech Rev 50(11):629–645ADSCrossRef Birman V (1997) Review of mechanics of shape memory alloy structures. Appl Mech Rev 50(11):629–645ADSCrossRef
28.
Zurück zum Zitat Paiva A, Savi M (2006) An overview of constitutive models for shape memory alloys. Math Probl Eng 2006:1–30CrossRefMathSciNet Paiva A, Savi M (2006) An overview of constitutive models for shape memory alloys. Math Probl Eng 2006:1–30CrossRefMathSciNet
29.
Zurück zum Zitat Khandelwal A, Buravalla V (2009) Models for shape memory alloy behavior: an overview of modeling approaches. Int J Struct Changes Solids 1(1):111–148 Khandelwal A, Buravalla V (2009) Models for shape memory alloy behavior: an overview of modeling approaches. Int J Struct Changes Solids 1(1):111–148
30.
Zurück zum Zitat Tokuda M, Ye M, Takakura M, Sittner P (1999) Thermomechanical behavior of shape memory alloy under complex loading conditions. Int J Plast 15(2):223–239CrossRefMATH Tokuda M, Ye M, Takakura M, Sittner P (1999) Thermomechanical behavior of shape memory alloy under complex loading conditions. Int J Plast 15(2):223–239CrossRefMATH
31.
Zurück zum Zitat Bouvet C, Calloch S, Lexcellent C (2004) A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. Eur J Mech-A/Solids 23(1):37–61CrossRefMATHMathSciNet Bouvet C, Calloch S, Lexcellent C (2004) A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. Eur J Mech-A/Solids 23(1):37–61CrossRefMATHMathSciNet
32.
Zurück zum Zitat Thiebaud F, Collet M, Foltete E, Lexcellent C (2007) Implementation of a multi-axial pseudoelastic model to predict the dynamic behavior of shape memory alloys. Smart Mater Struct 16:935ADSCrossRef Thiebaud F, Collet M, Foltete E, Lexcellent C (2007) Implementation of a multi-axial pseudoelastic model to predict the dynamic behavior of shape memory alloys. Smart Mater Struct 16:935ADSCrossRef
33.
Zurück zum Zitat Pan H, Thamburaja P, Chau F (2007) Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning. Int J Plast 23(4):711–732CrossRefMATH Pan H, Thamburaja P, Chau F (2007) Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning. Int J Plast 23(4):711–732CrossRefMATH
34.
Zurück zum Zitat Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S (2010) A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int J Plast 26(7):976–991CrossRefMATH Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S (2010) A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int J Plast 26(7):976–991CrossRefMATH
35.
Zurück zum Zitat Saleeb A, Padula S II, Kumar A (2011) A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions. Int J Plast 27(5):655–687CrossRefMATH Saleeb A, Padula S II, Kumar A (2011) A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions. Int J Plast 27(5):655–687CrossRefMATH
36.
Zurück zum Zitat Raniecki B, Lexcellent C, Tanaka K (1992) Thermodynamic models of pseudoelastic behaviour of shape memory alloys. Arch Mech 44:261–284MATHMathSciNet Raniecki B, Lexcellent C, Tanaka K (1992) Thermodynamic models of pseudoelastic behaviour of shape memory alloys. Arch Mech 44:261–284MATHMathSciNet
37.
Zurück zum Zitat Khachaturian A (1983) Theory of structural transformations in solids. Wiley, New York Khachaturian A (1983) Theory of structural transformations in solids. Wiley, New York
38.
Zurück zum Zitat Melnik R, Roberts A, Thomas K (1999) Modelling dynamics of shape-memory-alloys via computer algebra. Proc SPIE Math Control Smart Struct 3667:290–301ADS Melnik R, Roberts A, Thomas K (1999) Modelling dynamics of shape-memory-alloys via computer algebra. Proc SPIE Math Control Smart Struct 3667:290–301ADS
39.
Zurück zum Zitat Melnik R, Roberts A, Thomas KA (2000) Computing dynamics of copper-based SMA via center manifold reduction models. Comput Mat Sci 18:255–268CrossRef Melnik R, Roberts A, Thomas KA (2000) Computing dynamics of copper-based SMA via center manifold reduction models. Comput Mat Sci 18:255–268CrossRef
40.
Zurück zum Zitat Artemev A, Jin Y, Khachaturyan A (2001) Three-dimensional phase field model of proper martensitic transformation. Acta Mater 49(7):1165–1177CrossRef Artemev A, Jin Y, Khachaturyan A (2001) Three-dimensional phase field model of proper martensitic transformation. Acta Mater 49(7):1165–1177CrossRef
41.
Zurück zum Zitat Chen L (2002) Phase field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRef Chen L (2002) Phase field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRef
42.
Zurück zum Zitat Levitas V, Preston D (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis. Phys Rev B 66(134206):1–15 Levitas V, Preston D (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis. Phys Rev B 66(134206):1–15
43.
Zurück zum Zitat Ahluwalia R, Lookman T, Saxena A (2006) Dynamic strain loading of cubic to tetragonal martensites. Acta Materialia 54:2109–2120CrossRef Ahluwalia R, Lookman T, Saxena A (2006) Dynamic strain loading of cubic to tetragonal martensites. Acta Materialia 54:2109–2120CrossRef
44.
Zurück zum Zitat Wang L, Melnik R (2007) Finite volume analysis of nonlinear thermo-mechanical dynamics of shape memory alloys. Heat Mass Transf 43(6):535–546ADSCrossRef Wang L, Melnik R (2007) Finite volume analysis of nonlinear thermo-mechanical dynamics of shape memory alloys. Heat Mass Transf 43(6):535–546ADSCrossRef
45.
Zurück zum Zitat Bouville M, Ahluwalia R (2008) Microstructure and mechanical properties of constrained shape memory alloy nanograins and nanowires. Acta Mater 56(14):3558–3567CrossRef Bouville M, Ahluwalia R (2008) Microstructure and mechanical properties of constrained shape memory alloy nanograins and nanowires. Acta Mater 56(14):3558–3567CrossRef
46.
Zurück zum Zitat Daghia F, Fabrizio M, Grandi D (2010) A non isothermal Ginzburg–Landau model for phase transitions in shape memory alloys. Meccanica 45:797–807CrossRefMATHMathSciNet Daghia F, Fabrizio M, Grandi D (2010) A non isothermal Ginzburg–Landau model for phase transitions in shape memory alloys. Meccanica 45:797–807CrossRefMATHMathSciNet
47.
Zurück zum Zitat Dhote R, Fabrizio M, Melnik R, Zu J (2013) Hysteresis phenomena in shape memory alloys by non-isothermal Ginzburg–Landau models. Commun Nonlinear Sci Numer Simul 18:2549–2561ADSCrossRefMathSciNet Dhote R, Fabrizio M, Melnik R, Zu J (2013) Hysteresis phenomena in shape memory alloys by non-isothermal Ginzburg–Landau models. Commun Nonlinear Sci Numer Simul 18:2549–2561ADSCrossRefMathSciNet
48.
Zurück zum Zitat Idesman A, Cho J, Levitas V (2008) Finite element modeling of dynamics of martensitic phase transitions. Appl Phys Lett 93(4):043102ADSCrossRef Idesman A, Cho J, Levitas V (2008) Finite element modeling of dynamics of martensitic phase transitions. Appl Phys Lett 93(4):043102ADSCrossRef
49.
Zurück zum Zitat Melnik R, Roberts A, Thomas KA (2002) Phase transitions in shape memory alloys with hyperbolic heat conduction and differential-algebraic models. Comput Mech 29(1):16–26CrossRefMATH Melnik R, Roberts A, Thomas KA (2002) Phase transitions in shape memory alloys with hyperbolic heat conduction and differential-algebraic models. Comput Mech 29(1):16–26CrossRefMATH
50.
Zurück zum Zitat Melnik R, Roberts A (2003) Modelling nonlinear dynamics of shape-memory-alloys with approximate models of coupled thermoelasticity. Z Angew Math Mech 83(2):93–104CrossRefMATHMathSciNet Melnik R, Roberts A (2003) Modelling nonlinear dynamics of shape-memory-alloys with approximate models of coupled thermoelasticity. Z Angew Math Mech 83(2):93–104CrossRefMATHMathSciNet
51.
Zurück zum Zitat Mahapatra D, Melnik R (2006) Finite element analysis of phase transformation dynamics in shape memory alloys with a consistent Landau–Ginzburg free energy model. Mech Adv Mater Struct 13:443–455CrossRef Mahapatra D, Melnik R (2006) Finite element analysis of phase transformation dynamics in shape memory alloys with a consistent Landau–Ginzburg free energy model. Mech Adv Mater Struct 13:443–455CrossRef
52.
Zurück zum Zitat Wang L, Melnik R (2010) Low dimensional approximations to ferroelastic dynamics and hysteretic behavior due to phase transformations. J Appl Mech 77:031015CrossRef Wang L, Melnik R (2010) Low dimensional approximations to ferroelastic dynamics and hysteretic behavior due to phase transformations. J Appl Mech 77:031015CrossRef
53.
Zurück zum Zitat Dhote R, Melnik R, Zu J (2012) Dynamic thermo-mechanical coupling and size effects in finite shape memory alloy nanostructures. Comput Mat Sci 63:105–117CrossRef Dhote R, Melnik R, Zu J (2012) Dynamic thermo-mechanical coupling and size effects in finite shape memory alloy nanostructures. Comput Mat Sci 63:105–117CrossRef
54.
Zurück zum Zitat Wang L, Melnik R (2007) Thermo-mechanical wave propagation in shape memory alloy rod with phase transformations. Mech Adv Mater Struct 14(8):665–676CrossRef Wang L, Melnik R (2007) Thermo-mechanical wave propagation in shape memory alloy rod with phase transformations. Mech Adv Mater Struct 14(8):665–676CrossRef
55.
Zurück zum Zitat Melnik R, Wang L (2009) International conference on computational methods for coupled problems in science and engineering coupled problems 2009, CIMNE, Barcelona pp. 1–4. Melnik R, Wang L (2009) International conference on computational methods for coupled problems in science and engineering coupled problems 2009, CIMNE, Barcelona pp. 1–4.
56.
Zurück zum Zitat Dhote RP, Melnik RVN, Zu JW (2011) Dynamic thermo-mechanical properties of shape memory alloy nanowires upon multi-axial loading. ASME conference on smart materials, adaptive structures and intelligent systems pp. 411–417 Dhote RP, Melnik RVN, Zu JW (2011) Dynamic thermo-mechanical properties of shape memory alloy nanowires upon multi-axial loading. ASME conference on smart materials, adaptive structures and intelligent systems pp. 411–417
57.
Zurück zum Zitat Dhote R, Gomez H, Melnik R, Zu J. 3D coupled thermo-mechanical phase-field modeling of shape memory alloy dynamics via isogeometric analysis (submitted for evaluation, available as arXiv:1403.5612) Dhote R, Gomez H, Melnik R, Zu J. 3D coupled thermo-mechanical phase-field modeling of shape memory alloy dynamics via isogeometric analysis (submitted for evaluation, available as arXiv:1403.5612)
58.
Zurück zum Zitat Dhote R, Gomez H, Melnik R, Zu J. Shape memory alloy nanostructures with coupled dynamic thermo-mechanical effects, 2014, (available as arXiv:1403.6133) Dhote R, Gomez H, Melnik R, Zu J. Shape memory alloy nanostructures with coupled dynamic thermo-mechanical effects, 2014, (available as arXiv:1403.6133)
59.
Zurück zum Zitat Falk F (1980) Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metall 28(12):1773–1780CrossRef Falk F (1980) Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metall 28(12):1773–1780CrossRef
60.
Zurück zum Zitat Carstensen C (1996) On the computational of crystalline microstructure. Acta Numer 5:191–256CrossRef Carstensen C (1996) On the computational of crystalline microstructure. Acta Numer 5:191–256CrossRef
61.
Zurück zum Zitat Rabe K, Ahn C, Triscone J (2007) Physics of ferroelectrics: a modern perspective. Springer, Berlin Rabe K, Ahn C, Triscone J (2007) Physics of ferroelectrics: a modern perspective. Springer, Berlin
62.
Zurück zum Zitat Clayton JD, Knap J (2011) A phase field model of deformation twinning: nonlinear theory and numerical simulations. Phys D 240(9):841–858CrossRefMATHMathSciNet Clayton JD, Knap J (2011) A phase field model of deformation twinning: nonlinear theory and numerical simulations. Phys D 240(9):841–858CrossRefMATHMathSciNet
63.
Zurück zum Zitat Hildebrand F, Miehe C (2012) A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philos Mag 92(34):4250–4290ADSCrossRef Hildebrand F, Miehe C (2012) A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philos Mag 92(34):4250–4290ADSCrossRef
64.
Zurück zum Zitat Levin VA, Levitas VI, Zingerman KM, Freiman EI (2013) Phase-field simulation of stress-induced martensitic phase transformations at large strains. Int J Solids Struct 50(19):2914–2928CrossRef Levin VA, Levitas VI, Zingerman KM, Freiman EI (2013) Phase-field simulation of stress-induced martensitic phase transformations at large strains. Int J Solids Struct 50(19):2914–2928CrossRef
65.
Zurück zum Zitat Phillips R (2001) Crystals, defects and microstructures: modeling across scales. Cambridge University Press, CambridgeCrossRef Phillips R (2001) Crystals, defects and microstructures: modeling across scales. Cambridge University Press, CambridgeCrossRef
66.
Zurück zum Zitat Clayton JD (2011) Nonlinear mechanics of crystals, vol 177. Springer, DordrechtMATH Clayton JD (2011) Nonlinear mechanics of crystals, vol 177. Springer, DordrechtMATH
67.
Zurück zum Zitat Waitz T, Antretter T, Fischer F, Simha N, Karnthaler H (2007) Size effects on the martensitic phase transformation of NiTi nanograins. Acta Mater 55(2):419–444MATH Waitz T, Antretter T, Fischer F, Simha N, Karnthaler H (2007) Size effects on the martensitic phase transformation of NiTi nanograins. Acta Mater 55(2):419–444MATH
68.
Zurück zum Zitat Gadaj S, Nowacki W, Pieczyska E (2002) Temperature evolution in deformed shape memory alloy. Infrared Phys Technol 43(3–5):151–155ADSCrossRef Gadaj S, Nowacki W, Pieczyska E (2002) Temperature evolution in deformed shape memory alloy. Infrared Phys Technol 43(3–5):151–155ADSCrossRef
69.
Zurück zum Zitat Pieczyska E, Gadaj S, Nowacki W, Tobushi H (2006) Phase-transformation fronts evolution for stress-and strain-controlled tension tests in TiNi shape memory alloy. Exp Mech 46(4):531–542CrossRef Pieczyska E, Gadaj S, Nowacki W, Tobushi H (2006) Phase-transformation fronts evolution for stress-and strain-controlled tension tests in TiNi shape memory alloy. Exp Mech 46(4):531–542CrossRef
70.
Zurück zum Zitat Pieczyska EA, Tobushi H (2010) Temperature evolution in shape memory alloy during loading in various conditions. 10’th international conference on quantitative infrared thermography, pp. 1–6. Pieczyska EA, Tobushi H (2010) Temperature evolution in shape memory alloy during loading in various conditions. 10’th international conference on quantitative infrared thermography, pp. 1–6.
71.
Zurück zum Zitat Ricci A, Ricciardi A (2010) A new finite element approach for studying the effect of surface stress on microstructures. Sens Actuators A 159:141–148CrossRef Ricci A, Ricciardi A (2010) A new finite element approach for studying the effect of surface stress on microstructures. Sens Actuators A 159:141–148CrossRef
73.
Zurück zum Zitat Park K, Banerjee P (2002) Two-and three-dimensional transient thermoelastic analysis by BEM via particular integrals. Int J Solids Struct 39(10):2871–2892CrossRefMATH Park K, Banerjee P (2002) Two-and three-dimensional transient thermoelastic analysis by BEM via particular integrals. Int J Solids Struct 39(10):2871–2892CrossRefMATH
74.
Zurück zum Zitat Wang L, Melnik R (2006) Differential-algebraic approach to coupled problems of dynamic thermoelasticity. Appl Math Mech 27(9):1185–1196CrossRef Wang L, Melnik R (2006) Differential-algebraic approach to coupled problems of dynamic thermoelasticity. Appl Math Mech 27(9):1185–1196CrossRef
75.
Zurück zum Zitat Sapriel J (1975) Domain-wall orientations in ferroelastics. Phys Rev B 12(11):5128ADSCrossRef Sapriel J (1975) Domain-wall orientations in ferroelastics. Phys Rev B 12(11):5128ADSCrossRef
76.
Zurück zum Zitat Yasuda H, Komoto N, Ueda M, Umakoshi Y (2002) Microstructure control for developing Fe–Pd ferromagnetic shape memory alloys. Sci Technol Adv Mater 3(2):165–169CrossRef Yasuda H, Komoto N, Ueda M, Umakoshi Y (2002) Microstructure control for developing Fe–Pd ferromagnetic shape memory alloys. Sci Technol Adv Mater 3(2):165–169CrossRef
77.
Zurück zum Zitat Ma Y, Setzer A, Gerlach JW, Frost F, Esquinazi P, Mayr SG (2012) Freestanding single crystalline Fe–Pd ferromagnetic shape memory membranes—role of mechanical and magnetic constraints across the martensite transition. Adv Funct Mater 22(12):2529–2534 Ma Y, Setzer A, Gerlach JW, Frost F, Esquinazi P, Mayr SG (2012) Freestanding single crystalline Fe–Pd ferromagnetic shape memory membranes—role of mechanical and magnetic constraints across the martensite transition. Adv Funct Mater 22(12):2529–2534
78.
Zurück zum Zitat Liu Y (2001) Detwinning process and its anisotropy in shape memory alloys. Smart materials and MEMS, International Society for Optics and Photonics, pp. 82–93. Liu Y (2001) Detwinning process and its anisotropy in shape memory alloys. Smart materials and MEMS, International Society for Optics and Photonics, pp. 82–93.
79.
Zurück zum Zitat Rejzner J, Lexcellent C, Raniecki B (2002) Pseudoelastic behaviour of shape memory alloy beams under pure bending: experiments and modelling. Int J Mech Sci 44(4):665–686CrossRefMATH Rejzner J, Lexcellent C, Raniecki B (2002) Pseudoelastic behaviour of shape memory alloy beams under pure bending: experiments and modelling. Int J Mech Sci 44(4):665–686CrossRefMATH
80.
Zurück zum Zitat Reedlunn B, Churchill CB, Nelson EE, Shaw JA, Daly SH (2014) Tension, compression, and bending of superelastic shape memory alloy tubes. J Mech Phys Solids 63:506–537 Reedlunn B, Churchill CB, Nelson EE, Shaw JA, Daly SH (2014) Tension, compression, and bending of superelastic shape memory alloy tubes. J Mech Phys Solids 63:506–537
81.
Zurück zum Zitat Dhote R, Gomez H, Melnik R, Zu J (2013) Isogeometric analysis of coupled thermo-mechanical phase-field models for shape memory alloys using distributed computing. Proc Comput Sci 18:1068–1076CrossRef Dhote R, Gomez H, Melnik R, Zu J (2013) Isogeometric analysis of coupled thermo-mechanical phase-field models for shape memory alloys using distributed computing. Proc Comput Sci 18:1068–1076CrossRef
Metadaten
Titel
Dynamic multi-axial behavior of shape memory alloy nanowires with coupled thermo-mechanical phase-field models
verfasst von
R. P. Dhote
R. N. V. Melnik
J. Zu
Publikationsdatum
01.07.2014
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 7/2014
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-014-9938-5

Weitere Artikel der Ausgabe 7/2014

Meccanica 7/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.