Skip to main content
Erschienen in: Meccanica 4/2015

01.04.2015

Influence of magnetic field and heat transfer on two-phase fluid model for oscillatory blood flow in an arterial stenosis

verfasst von: R. Ponalagusamy, R. Tamil Selvi

Erschienen in: Meccanica | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The unsteady two-fluid blood flow model in an artery with mild stenosis is considered by taking into account of effects of both heat transfer and magnetic field. Such a combination has not been reported in the literature of blood flow. The effects of plasma layer thickness, magnetic field, radiation parameter, thermal conductivity and viscosity ratio on flow variables are discussed and depicted graphically. The phase lag between pressure gradient and flow variables has been predicted and the effects of magnetic and radiation parameters, thermal conductivity, plasma layer thickness and Grashof number on the phase lag are brought out which form new information that are, for the first time, added to the literature. It has been pointed out here that the temperature and shear stress (or wall shear stress) decrease with increasing of plasma layer thickness. The flow resistance decreases with the increase in Grashof number and plasma layer thickness. Hence, the existence of the peripheral plasma layer and the pivotal role of Grashof number could be useful for the functions of the diseased arterial system and hence it is concluded that the present study is believed to yield some good improvement over two-fluid models discussed in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ambethkar V, Singh PK (2011) Effect of magnetic field on an oscillatory flow of a viscoelastic fluid with thermal radiation. Appl Math Sci 5:935–946MATHMathSciNet Ambethkar V, Singh PK (2011) Effect of magnetic field on an oscillatory flow of a viscoelastic fluid with thermal radiation. Appl Math Sci 5:935–946MATHMathSciNet
2.
Zurück zum Zitat Anwar Beg O, Bhargava R, Rawat S, Halim K, Takhar HS (2008) Computational modeling of biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-Darcian porous medium. Meccanica 43:391–410CrossRefMATHMathSciNet Anwar Beg O, Bhargava R, Rawat S, Halim K, Takhar HS (2008) Computational modeling of biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-Darcian porous medium. Meccanica 43:391–410CrossRefMATHMathSciNet
3.
Zurück zum Zitat Bhargava R, Rawat S, Takhar HS, Beg OA (2007) Pulsatile magneto-biofluid flow and mass transfer in a non-Darcian porous medium channel. Meccanica 42:247–262CrossRefMATHMathSciNet Bhargava R, Rawat S, Takhar HS, Beg OA (2007) Pulsatile magneto-biofluid flow and mass transfer in a non-Darcian porous medium channel. Meccanica 42:247–262CrossRefMATHMathSciNet
4.
Zurück zum Zitat Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York
5.
Zurück zum Zitat Bugliarello G, Hayden JW (1963) Detailed characteristics of the flow of blood in vitro. Trans Soc Rheol 7:209–230CrossRef Bugliarello G, Hayden JW (1963) Detailed characteristics of the flow of blood in vitro. Trans Soc Rheol 7:209–230CrossRef
6.
Zurück zum Zitat Bugliarello G, Sevilla J (1970) Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7:85–107 Bugliarello G, Sevilla J (1970) Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7:85–107
7.
Zurück zum Zitat Caro CG, Fitz-Gerald JM, Schroter RC (1971) Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis. Proc R Soc Lond B Biol Sci 177:109–133CrossRefADS Caro CG, Fitz-Gerald JM, Schroter RC (1971) Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis. Proc R Soc Lond B Biol Sci 177:109–133CrossRefADS
8.
Zurück zum Zitat Caro CG (1981) Arterial fluid mechanics and atherogenesis. Recent Adv Cardiovasc Dis 2:6–11 Caro CG (1981) Arterial fluid mechanics and atherogenesis. Recent Adv Cardiovasc Dis 2:6–11
9.
Zurück zum Zitat Charm S, Paltiel B, Kurland GS (1968) Heat transfer coefficients in blood flow. Biorheology 5:133–145 Charm S, Paltiel B, Kurland GS (1968) Heat transfer coefficients in blood flow. Biorheology 5:133–145
10.
Zurück zum Zitat Chaturani P, Kaloni PN (1976) Two-fluid Poiseuille flow model for blood flow through arteries of small diameter and arterioles. Biorheology 13:243–250 Chaturani P, Kaloni PN (1976) Two-fluid Poiseuille flow model for blood flow through arteries of small diameter and arterioles. Biorheology 13:243–250
11.
Zurück zum Zitat Chaturani P, Ponalagusamy R (1982) A two-fluid model for blood flow through stenosed arteries. In: Proceedings of 11th national conference on fluid mechanics and fluid power, B.H.E.L. (R & D), Hyderabad, India, pp 16–22 Chaturani P, Ponalagusamy R (1982) A two-fluid model for blood flow through stenosed arteries. In: Proceedings of 11th national conference on fluid mechanics and fluid power, B.H.E.L. (R & D), Hyderabad, India, pp 16–22
12.
Zurück zum Zitat Chaturani P, Ponalagusamy R (1983) Blood flow through stenosed arteries. In: Proceedings of first international conference on physiological fluid dynamics, vol 1, pp 63–67 Chaturani P, Ponalagusamy R (1983) Blood flow through stenosed arteries. In: Proceedings of first international conference on physiological fluid dynamics, vol 1, pp 63–67
13.
Zurück zum Zitat Chaturani P, Ponalagusamy R (1984) Analysis of pulsatile blood flow through stenosed arteries and its applications to cardiovascular diseases. In: Proceedings of 13th national conference on fluid mechanics and fluid power (FMFP-1984), pp 463–468 Chaturani P, Ponalagusamy R (1984) Analysis of pulsatile blood flow through stenosed arteries and its applications to cardiovascular diseases. In: Proceedings of 13th national conference on fluid mechanics and fluid power (FMFP-1984), pp 463–468
14.
Zurück zum Zitat Cogley ACL, Vincenti WG, Gilles ES (1968) Differential approximation for radiative heat transfer in a nonlinear equations-grey gas near equilibrium. Am Inst Aeronaut Astronaut J 6:551–553CrossRef Cogley ACL, Vincenti WG, Gilles ES (1968) Differential approximation for radiative heat transfer in a nonlinear equations-grey gas near equilibrium. Am Inst Aeronaut Astronaut J 6:551–553CrossRef
15.
Zurück zum Zitat Craciunescu OI, Clegg ST (2001) Pulsatile blood flow effects on temperature distribution and heat transfer in rigid vessels. J Biomech Eng 123:500–505CrossRef Craciunescu OI, Clegg ST (2001) Pulsatile blood flow effects on temperature distribution and heat transfer in rigid vessels. J Biomech Eng 123:500–505CrossRef
16.
Zurück zum Zitat Dintenfass L (1977) Viscosity factors in hypertensive and cardiovascular diseases. Cardiovasc Med 2:337–354 Dintenfass L (1977) Viscosity factors in hypertensive and cardiovascular diseases. Cardiovasc Med 2:337–354
17.
Zurück zum Zitat El-Shehawey EF, Mekheimer K, El Kot MA (2008) The micropolar fluid model for blood flow through a stenotic arteries. Proc Math Phys Soc Egypt 86:215–234 El-Shehawey EF, Mekheimer K, El Kot MA (2008) The micropolar fluid model for blood flow through a stenotic arteries. Proc Math Phys Soc Egypt 86:215–234
18.
Zurück zum Zitat Forrester JH, Young DF (1970) Flow through a converging—diverging tube and its implications in occlusive vascular disease-I and II. J Biomech 3:297–316CrossRef Forrester JH, Young DF (1970) Flow through a converging—diverging tube and its implications in occlusive vascular disease-I and II. J Biomech 3:297–316CrossRef
19.
Zurück zum Zitat Fry DL (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 22:165–197CrossRef Fry DL (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 22:165–197CrossRef
20.
Zurück zum Zitat Fry DL (1973), Responses of the arterial wall to certain physical factors. In: Atherogenesis: initiating factors, Ciba foundation symposium, Elsevier, Experta Medica, North Holland, Amsterdam, vol 12, pp 93–125 Fry DL (1973), Responses of the arterial wall to certain physical factors. In: Atherogenesis: initiating factors, Ciba foundation symposium, Elsevier, Experta Medica, North Holland, Amsterdam, vol 12, pp 93–125
21.
Zurück zum Zitat Haldar K (1985) Effects of the shape of stenosis on the resistance to blood flow through an artery. Bull Math Biol 47:545–550CrossRef Haldar K (1985) Effects of the shape of stenosis on the resistance to blood flow through an artery. Bull Math Biol 47:545–550CrossRef
22.
Zurück zum Zitat Haldar K, Ghosh SN (1994) Effect of a magnetic field on blood flow through an indented tube in the presence of erythrocytes. Indian J Pure Appl Math 25(1994):345–352MATH Haldar K, Ghosh SN (1994) Effect of a magnetic field on blood flow through an indented tube in the presence of erythrocytes. Indian J Pure Appl Math 25(1994):345–352MATH
23.
Zurück zum Zitat Hershey D, Byrnes RE, Deddens RL, Rao AM (1964) Blood rheology: temperature dependence of the power law model. In AIChE Meeting, Boston Hershey D, Byrnes RE, Deddens RL, Rao AM (1964) Blood rheology: temperature dependence of the power law model. In AIChE Meeting, Boston
24.
Zurück zum Zitat Ikbal M, Chakravarty AS, Mandal PK (2009) Two-fluid micropolar fluid flow through stenosed artery: effect of peripheral layer thickness. Comput Math Appl 58:1328–1339CrossRefMATHMathSciNet Ikbal M, Chakravarty AS, Mandal PK (2009) Two-fluid micropolar fluid flow through stenosed artery: effect of peripheral layer thickness. Comput Math Appl 58:1328–1339CrossRefMATHMathSciNet
25.
Zurück zum Zitat Imaeda K, Goodman FO (1980) Analysis of non-linear pulsatile blood flow in arteries. J Biomech 13:1007–1021CrossRef Imaeda K, Goodman FO (1980) Analysis of non-linear pulsatile blood flow in arteries. J Biomech 13:1007–1021CrossRef
26.
Zurück zum Zitat Israel-Cookey C, Ogulu A, Omubo-pepple VB (2003) Influence of viscous dissipation and radiation on unsteady MHD free-convection flow past an infinite heated vertical plate in a porous medium with time-dependent suction. Int J Heat Mass Transf 46:2305–2311CrossRefMATH Israel-Cookey C, Ogulu A, Omubo-pepple VB (2003) Influence of viscous dissipation and radiation on unsteady MHD free-convection flow past an infinite heated vertical plate in a porous medium with time-dependent suction. Int J Heat Mass Transf 46:2305–2311CrossRefMATH
27.
Zurück zum Zitat Kumar S, Kumar S, Kumar D (2009) Oscillatory MHD flow of blood through an artery with mild stenosis (Research Note). Int J Eng Trans A Basics 22:125–130MATH Kumar S, Kumar S, Kumar D (2009) Oscillatory MHD flow of blood through an artery with mild stenosis (Research Note). Int J Eng Trans A Basics 22:125–130MATH
28.
Zurück zum Zitat Mac Donald DA (1979) On steady flow through modeled vascular stenoses. J Biomech 12:13–20CrossRef Mac Donald DA (1979) On steady flow through modeled vascular stenoses. J Biomech 12:13–20CrossRef
29.
Zurück zum Zitat Mauro Greppi (1978) Numerical solution of a pulsatile flow problem. Meccanica 13:230–237CrossRefMATH Mauro Greppi (1978) Numerical solution of a pulsatile flow problem. Meccanica 13:230–237CrossRefMATH
30.
Zurück zum Zitat Midya C, Layek GC, Gupta AS, Mahapatra TR (2003) Mageneto-hydrodynamic viscous flow separation in a channel with constrictions. Trans ASME J Fluids Eng 125:952–962CrossRef Midya C, Layek GC, Gupta AS, Mahapatra TR (2003) Mageneto-hydrodynamic viscous flow separation in a channel with constrictions. Trans ASME J Fluids Eng 125:952–962CrossRef
31.
Zurück zum Zitat Motta M, Haik Y, Gandhari A, Chen CJ (1998) High magnetic field effects on human deoxygenated hemoglobin light absorption. Bioelectrochem Bioenerg 47:297–300CrossRef Motta M, Haik Y, Gandhari A, Chen CJ (1998) High magnetic field effects on human deoxygenated hemoglobin light absorption. Bioelectrochem Bioenerg 47:297–300CrossRef
32.
Zurück zum Zitat Ogulu A, Bestman AR (1993) Deep heat muscle treatment a mathematical model—I & II. Acta Phys Hung 73:3–16, 17–27 Ogulu A, Bestman AR (1993) Deep heat muscle treatment a mathematical model—I & II. Acta Phys Hung 73:3–16, 17–27
33.
Zurück zum Zitat Ogulu A, Abbey TM (2005) Simulation of heat transfer on an oscillatory blood flow in an indented porous artery. Int Commun Heat Mass Transf 32:983–989CrossRef Ogulu A, Abbey TM (2005) Simulation of heat transfer on an oscillatory blood flow in an indented porous artery. Int Commun Heat Mass Transf 32:983–989CrossRef
34.
Zurück zum Zitat Philip D, Chandra P (1996) Flow of Eringen fluid (simple micro fluid) through an artery with mild stenosis. Int J Eng Sci 34:87–99CrossRefMATH Philip D, Chandra P (1996) Flow of Eringen fluid (simple micro fluid) through an artery with mild stenosis. Int J Eng Sci 34:87–99CrossRefMATH
35.
Zurück zum Zitat Ponalagusamy R (1986) Blood flow through stenosed tube. Ph.D. Thesis, IIT, Bombay, India Ponalagusamy R (1986) Blood flow through stenosed tube. Ph.D. Thesis, IIT, Bombay, India
36.
Zurück zum Zitat Ponalagusamy R, Kawahava M (1989) A finite element analysis of laminar unsteady flows of viscoelastic fluids through channels with non-uniform cross-sections. Int J Numer Methods Fluids 9:1487–1501CrossRef Ponalagusamy R, Kawahava M (1989) A finite element analysis of laminar unsteady flows of viscoelastic fluids through channels with non-uniform cross-sections. Int J Numer Methods Fluids 9:1487–1501CrossRef
37.
Zurück zum Zitat Ponalagusamy R (2007) Blood flow through an artery with mild stenosis: a two-layered model, different shapes of stenoses and slip velocity at the wall. J Appl Sci 7:1071–1077CrossRef Ponalagusamy R (2007) Blood flow through an artery with mild stenosis: a two-layered model, different shapes of stenoses and slip velocity at the wall. J Appl Sci 7:1071–1077CrossRef
38.
Zurück zum Zitat Ponalagusamy R, Tamil Selvi R (2011) A study on two-fluid model (Casson–Newtonian) for blood flow through an arterial stenosis: axially variable slip velocity at the wall. J Franklin Inst 348:2308–2321CrossRefMATHMathSciNet Ponalagusamy R, Tamil Selvi R (2011) A study on two-fluid model (Casson–Newtonian) for blood flow through an arterial stenosis: axially variable slip velocity at the wall. J Franklin Inst 348:2308–2321CrossRefMATHMathSciNet
39.
Zurück zum Zitat Ponalagusamy R, Tamil Selvi R (2013) Blood flow in stenosed arteries with radially variable viscosity, peripheral plasma layer thickness and magnetic field. Meccanica 48:2427–2438CrossRefMATHMathSciNet Ponalagusamy R, Tamil Selvi R (2013) Blood flow in stenosed arteries with radially variable viscosity, peripheral plasma layer thickness and magnetic field. Meccanica 48:2427–2438CrossRefMATHMathSciNet
40.
Zurück zum Zitat Ponalagusamy R (2012) Mathematical analysis on effect of non-Newtonian behavior of blood on optimal geometry of microvascular bifurcation system. J Franklin Inst 349:2861–2874CrossRefMATHMathSciNet Ponalagusamy R (2012) Mathematical analysis on effect of non-Newtonian behavior of blood on optimal geometry of microvascular bifurcation system. J Franklin Inst 349:2861–2874CrossRefMATHMathSciNet
41.
Zurück zum Zitat Ponalagusamy R, Tamil Selvi R, Banerjee AK (2012) Mathematical model of pulsatile flow of non-Newtonian fluid in tubes of varying cross-sections and its implications to blood flow. J Franklin Inst 349:1681–1698CrossRefMATHMathSciNet Ponalagusamy R, Tamil Selvi R, Banerjee AK (2012) Mathematical model of pulsatile flow of non-Newtonian fluid in tubes of varying cross-sections and its implications to blood flow. J Franklin Inst 349:1681–1698CrossRefMATHMathSciNet
42.
Zurück zum Zitat Ponalagusamy R (2013) Pulsatile flow of Hershel–Bulkley fluid in tapered blood vessels. In: Proceedings of the 2013 international conference on scientific computing (CSC 2013), WORLDCOMP’13, held in Las Vegas Nevada, USA, pp 67–73 Ponalagusamy R (2013) Pulsatile flow of Hershel–Bulkley fluid in tapered blood vessels. In: Proceedings of the 2013 international conference on scientific computing (CSC 2013), WORLDCOMP’13, held in Las Vegas Nevada, USA, pp 67–73
43.
Zurück zum Zitat Rao AR, Deshikachar KS (1988) Physiological type flow in a circular pipe in the presence of a transverse magnetic field. J Indian Inst Sci 68:247–260MATH Rao AR, Deshikachar KS (1988) Physiological type flow in a circular pipe in the presence of a transverse magnetic field. J Indian Inst Sci 68:247–260MATH
44.
Zurück zum Zitat Sankar DS, Lee U (2010) Two-fluid Casson model for pulsatile blood flow through stenosed arteries: a theoretical model. Commun Nonlinear Sci Numer Simul 15:2086–2097CrossRefADSMATHMathSciNet Sankar DS, Lee U (2010) Two-fluid Casson model for pulsatile blood flow through stenosed arteries: a theoretical model. Commun Nonlinear Sci Numer Simul 15:2086–2097CrossRefADSMATHMathSciNet
45.
Zurück zum Zitat Shahmohamadi H (2011) Reliable treatment of a new analytical method for solving MHD boundary-layer equations. Meccanica 46:921–933CrossRefMATHMathSciNet Shahmohamadi H (2011) Reliable treatment of a new analytical method for solving MHD boundary-layer equations. Meccanica 46:921–933CrossRefMATHMathSciNet
46.
Zurück zum Zitat Shukla JB, Parihar RS, Rao BRP (1980) Effects of stenosis on non-Newtonian flow of the blood in an artery. Bull Math Biol 42:283–294CrossRefMATH Shukla JB, Parihar RS, Rao BRP (1980) Effects of stenosis on non-Newtonian flow of the blood in an artery. Bull Math Biol 42:283–294CrossRefMATH
47.
Zurück zum Zitat Shukla JB, Parihar RS, Rao BRP (1980) Effect of peripheral layer viscosity on blood flow through the artery with mild stenosis. Bull Math Biol 42:797–805CrossRefMATH Shukla JB, Parihar RS, Rao BRP (1980) Effect of peripheral layer viscosity on blood flow through the artery with mild stenosis. Bull Math Biol 42:797–805CrossRefMATH
48.
Zurück zum Zitat Shukla JB, Parihar RS, Rao BRP (1980) Biorheological aspects of blood flow through artery with mild stenosis: effects of peripheral layer. Biorheology 17:403–410 Shukla JB, Parihar RS, Rao BRP (1980) Biorheological aspects of blood flow through artery with mild stenosis: effects of peripheral layer. Biorheology 17:403–410
49.
Zurück zum Zitat Srivastava VP (1996) Two-phase model of blood flow through stenosed tubes in the presence of a peripheral layer: applications. J Biomech 29:1377–1382CrossRef Srivastava VP (1996) Two-phase model of blood flow through stenosed tubes in the presence of a peripheral layer: applications. J Biomech 29:1377–1382CrossRef
50.
Zurück zum Zitat Srivastava VP, Srivastava R (2009) Particulate suspension blood flow through a narrow catheterized artery. Comput Math Appl 58:227–238CrossRefMATHMathSciNet Srivastava VP, Srivastava R (2009) Particulate suspension blood flow through a narrow catheterized artery. Comput Math Appl 58:227–238CrossRefMATHMathSciNet
51.
Zurück zum Zitat Vardanian VA (1973) Effect of magnetic field on blood flow. Biofizika 18:491–496 Vardanian VA (1973) Effect of magnetic field on blood flow. Biofizika 18:491–496
52.
Zurück zum Zitat Victor SA, Shah VL (1975) Heat transfer to blood flowing in a tube. Biorheology 12:361–368 Victor SA, Shah VL (1975) Heat transfer to blood flowing in a tube. Biorheology 12:361–368
53.
Zurück zum Zitat Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targeting. J Biomech 35:813–821CrossRef Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targeting. J Biomech 35:813–821CrossRef
54.
Zurück zum Zitat Whitmore RL (1968) The rheology of the circulation. Pergamon Press, New York Whitmore RL (1968) The rheology of the circulation. Pergamon Press, New York
55.
Zurück zum Zitat Young DF (1968) Effects of a time-dependent stenosis on flow through a tube. J Eng Ind 90:248–254CrossRef Young DF (1968) Effects of a time-dependent stenosis on flow through a tube. J Eng Ind 90:248–254CrossRef
56.
Zurück zum Zitat Young DF (1979) Fluid mechanics of arterial stenoses. J Biomech Eng Trans ASME 101:157–175CrossRef Young DF (1979) Fluid mechanics of arterial stenoses. J Biomech Eng Trans ASME 101:157–175CrossRef
Metadaten
Titel
Influence of magnetic field and heat transfer on two-phase fluid model for oscillatory blood flow in an arterial stenosis
verfasst von
R. Ponalagusamy
R. Tamil Selvi
Publikationsdatum
01.04.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 4/2015
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-014-9990-1

Weitere Artikel der Ausgabe 4/2015

Meccanica 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.