Skip to main content
Erschienen in: Meccanica 1-2/2017

18.03.2016

Analytical study of the frequency shifts of micro and nano clamped–clamped beam resonators due to an added mass

verfasst von: Adam Bouchaala, Ali H. Nayfeh, Mohammad I. Younis

Erschienen in: Meccanica | Ausgabe 1-2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present analytical formulations to calculate the induced resonance frequency shifts of electrically actuated clamped–clamped micro and nano (Carbon nanotube) beams due to an added mass. Based on the Euler–Bernoulli beam theory, we investigate the linear dynamic responses of the beams added masses, which are modeled as discrete point masses. Analytical expressions based on perturbation techniques and a one-mode Galerkin approximation are developed to calculate accurately the frequency shifts under a DC voltage as a function of the added mass and position. The analytical results are compared to numerical solution of the eigenvalue problem. Results are shown for the fundamental as well as the higher-order modes of the beams. The results indicate a significant increase in the frequency shift, and hence the sensitivity of detection, when scaling down to nano scale and using higher-order modes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bhattacharyya P, Basu P, Mondal B, Saha H (2008) A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane. Microelectron Reliab 48:1772–1779CrossRef Bhattacharyya P, Basu P, Mondal B, Saha H (2008) A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane. Microelectron Reliab 48:1772–1779CrossRef
2.
Zurück zum Zitat Li X, Yu H, Gan X, Xia X, Xu P, Li J et al (2009) Integrated MEMS/NEMS resonant cantilevers for ultrasensitive biological detection. J Sens 2009:231–240 Li X, Yu H, Gan X, Xia X, Xu P, Li J et al (2009) Integrated MEMS/NEMS resonant cantilevers for ultrasensitive biological detection. J Sens 2009:231–240
3.
Zurück zum Zitat Park K, Kim N, Morisette DT, Aluru N, Bashir R (2012) Resonant MEMS mass sensors for measurement of microdroplet evaporation. Microelectromech Syst J 21:702–711CrossRef Park K, Kim N, Morisette DT, Aluru N, Bashir R (2012) Resonant MEMS mass sensors for measurement of microdroplet evaporation. Microelectromech Syst J 21:702–711CrossRef
4.
Zurück zum Zitat Ramasamy M, Liang C, Prorok B (2011) Magneto-mechanical MEMS sensors for bio-detection. In: Proulx T (ed) MEMS and nanotechnology, vol 2. Springer, Berlin, pp 9–15 Ramasamy M, Liang C, Prorok B (2011) Magneto-mechanical MEMS sensors for bio-detection. In: Proulx T (ed) MEMS and nanotechnology, vol 2. Springer, Berlin, pp 9–15
5.
Zurück zum Zitat Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75:2229–2253ADSCrossRef Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75:2229–2253ADSCrossRef
6.
Zurück zum Zitat Waggoner PS, Craighead HG (2007) Micro-and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7:1238–1255CrossRef Waggoner PS, Craighead HG (2007) Micro-and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7:1238–1255CrossRef
7.
Zurück zum Zitat Suja K, Raveendran ES, Komaragiri R (2013) Investigation on better sensitive silicon based MEMS pressure sensor for high pressure measurement. Int J Computer Appl 72(8):40–47. doi: 10.5120/12517-9008 Suja K, Raveendran ES, Komaragiri R (2013) Investigation on better sensitive silicon based MEMS pressure sensor for high pressure measurement. Int J Computer Appl 72(8):40–47. doi: 10.​5120/​12517-9008
8.
Zurück zum Zitat Ganesan AV (2013) A novel MEMS based immunosensor for ebola virus detection. In: Proceedings of the ASME 2013 international mechanical engineering congress and exposition IMECE2013, November 15–21, San Diego, California, USA Ganesan AV (2013) A novel MEMS based immunosensor for ebola virus detection. In: Proceedings of the ASME 2013 international mechanical engineering congress and exposition IMECE2013, November 15–21, San Diego, California, USA
9.
Zurück zum Zitat Gau J-J, Lan EH, Dunn B, Ho C-M, Woo JC (2001) A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosens Bioelectron 16:745–755CrossRef Gau J-J, Lan EH, Dunn B, Ho C-M, Woo JC (2001) A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosens Bioelectron 16:745–755CrossRef
10.
Zurück zum Zitat Ilic B, Czaplewski D, Zalalutdinov M, Craighead H, Neuzil P, Campagnolo C et al (2001) Single cell detection with micromechanical oscillators. J Vac Sci Technol B 19:2825–2828CrossRef Ilic B, Czaplewski D, Zalalutdinov M, Craighead H, Neuzil P, Campagnolo C et al (2001) Single cell detection with micromechanical oscillators. J Vac Sci Technol B 19:2825–2828CrossRef
11.
Zurück zum Zitat Park K, Millet LJ, Kim N, Li H, Jin X, Popescu G et al (2010) Measurement of adherent cell mass and growth. Proc Natl Acad Sci 107:20691–20696ADSCrossRef Park K, Millet LJ, Kim N, Li H, Jin X, Popescu G et al (2010) Measurement of adherent cell mass and growth. Proc Natl Acad Sci 107:20691–20696ADSCrossRef
12.
Zurück zum Zitat Park K, Millet L, Kim N, Li H, Hsia K, Aluru N et al (2011) MEMS mass sensors with uniform sensitivity for monitoring cellular apoptosis. In: 2011 16th International solid-state sensors, actuators and microsystems conference (TRANSDUCERS), pp 759–762 Park K, Millet L, Kim N, Li H, Hsia K, Aluru N et al (2011) MEMS mass sensors with uniform sensitivity for monitoring cellular apoptosis. In: 2011 16th International solid-state sensors, actuators and microsystems conference (TRANSDUCERS), pp 759–762
13.
Zurück zum Zitat Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 19:856–860ADSCrossRef Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 19:856–860ADSCrossRef
14.
Zurück zum Zitat Carrascosa LG, Moreno M, Álvarez M, Lechuga LM (2006) Nanomechanical biosensors: a new sensing tool. TrAC Trends Anal Chem 25:196–206CrossRef Carrascosa LG, Moreno M, Álvarez M, Lechuga LM (2006) Nanomechanical biosensors: a new sensing tool. TrAC Trends Anal Chem 25:196–206CrossRef
15.
Zurück zum Zitat Lavrik NV, Datskos PG (2003) Femtogram mass detection using photothermally actuated nanomechanical resonators. Appl Phys Lett 82:2697–2699ADSCrossRef Lavrik NV, Datskos PG (2003) Femtogram mass detection using photothermally actuated nanomechanical resonators. Appl Phys Lett 82:2697–2699ADSCrossRef
16.
Zurück zum Zitat Hansen KM, Thundat T (2005) Microcantilever biosensors. Methods 37:57–64CrossRef Hansen KM, Thundat T (2005) Microcantilever biosensors. Methods 37:57–64CrossRef
17.
Zurück zum Zitat Raiteri R, Grattarola M, Butt H-J, Skládal P (2001) Micromechanical cantilever-based biosensors. Sens Actuators B Chem 79:115–126CrossRef Raiteri R, Grattarola M, Butt H-J, Skládal P (2001) Micromechanical cantilever-based biosensors. Sens Actuators B Chem 79:115–126CrossRef
18.
Zurück zum Zitat Bouchaala A, Nayfeh AH, Younis MI (2016) Frequency shifts of micro and nano cantilever beam resonators due to added mass. J Dyn Syst Meas Control (in press) Bouchaala A, Nayfeh AH, Younis MI (2016) Frequency shifts of micro and nano cantilever beam resonators due to added mass. J Dyn Syst Meas Control (in press)
19.
Zurück zum Zitat Dorsey K, Bedair S, Fedder G (2014) Gas chemical sensitivity of a CMOS MEMS cantilever functionalized via evaporation driven assembly. J Micromech Microeng 24:075001CrossRef Dorsey K, Bedair S, Fedder G (2014) Gas chemical sensitivity of a CMOS MEMS cantilever functionalized via evaporation driven assembly. J Micromech Microeng 24:075001CrossRef
20.
Zurück zum Zitat Rochus V, Wang B, Chaudhuri A, Helin P, Severi S, Rottenberg X (2015) Fast analytical design of Poly-SiGe MEMS pressure sensors. In: 16th International conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE), pp 1–4 Rochus V, Wang B, Chaudhuri A, Helin P, Severi S, Rottenberg X (2015) Fast analytical design of Poly-SiGe MEMS pressure sensors. In: 16th International conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE), pp 1–4
21.
Zurück zum Zitat Brown ER (1998) RF-MEMS switches for reconfigurable integrated circuits. Microw Theory Tech IEEE Trans 46:1868–1880ADSCrossRef Brown ER (1998) RF-MEMS switches for reconfigurable integrated circuits. Microw Theory Tech IEEE Trans 46:1868–1880ADSCrossRef
22.
Zurück zum Zitat Pourkamali S, Hashimura A, Abdolvand R, Ho GK, Erbil A, Ayazi F (2003) High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100-nm transduction gaps. Microelectromech Syst J 12:487–496CrossRef Pourkamali S, Hashimura A, Abdolvand R, Ho GK, Erbil A, Ayazi F (2003) High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100-nm transduction gaps. Microelectromech Syst J 12:487–496CrossRef
23.
Zurück zum Zitat Rahafrooz A, Hajjam A, Tousifar B, Pourkamali S (2010) Thermal actuation, a suitable mechanism for high frequency electromechanical resonators. In: IEEE 23rd international conference micro electro mechanical systems (MEMS), pp 200–203 Rahafrooz A, Hajjam A, Tousifar B, Pourkamali S (2010) Thermal actuation, a suitable mechanism for high frequency electromechanical resonators. In: IEEE 23rd international conference micro electro mechanical systems (MEMS), pp 200–203
24.
Zurück zum Zitat Gupta A, Akin D, Bashir R (2004) Single virus particle mass detection using microresonators with nanoscale thickness. Appl Phys Lett 84:1976–1978ADSCrossRef Gupta A, Akin D, Bashir R (2004) Single virus particle mass detection using microresonators with nanoscale thickness. Appl Phys Lett 84:1976–1978ADSCrossRef
25.
Zurück zum Zitat Venstra W, Westra H, Gavan KB, Van der Zant H (2009) Magnetomotive drive and detection of clamped–clamped mechanical resonators in water. Appl Phys Lett 95:263103ADSCrossRef Venstra W, Westra H, Gavan KB, Van der Zant H (2009) Magnetomotive drive and detection of clamped–clamped mechanical resonators in water. Appl Phys Lett 95:263103ADSCrossRef
26.
Zurück zum Zitat Patrascu M, Pettine J, Karabacak D, Vandecasteele M, Brongersma S, Crego-Calama M (2011) Oscillator-based volatile detection system using doubly-clamped micromechanical resonators. Procedia Eng 25:1533–1536CrossRef Patrascu M, Pettine J, Karabacak D, Vandecasteele M, Brongersma S, Crego-Calama M (2011) Oscillator-based volatile detection system using doubly-clamped micromechanical resonators. Procedia Eng 25:1533–1536CrossRef
27.
Zurück zum Zitat Aboelkassem Y, Nayfeh AH, Ghommem M (2010) Bio-mass sensor using an electrostatically actuated microcantilever in a vacuum microchannel. Microsyst Technol 16:1749–1755CrossRef Aboelkassem Y, Nayfeh AH, Ghommem M (2010) Bio-mass sensor using an electrostatically actuated microcantilever in a vacuum microchannel. Microsyst Technol 16:1749–1755CrossRef
28.
Zurück zum Zitat Nayfeh AH, Ouakad H, Najar F, Choura S, Abdel-Rahman E (2010) Nonlinear dynamics of a resonant gas sensor. Nonlinear Dyn 59:607–618CrossRefMATH Nayfeh AH, Ouakad H, Najar F, Choura S, Abdel-Rahman E (2010) Nonlinear dynamics of a resonant gas sensor. Nonlinear Dyn 59:607–618CrossRefMATH
29.
Zurück zum Zitat Younis MI, Alsaleem F (2009) Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J Comput Nonlinear Dyn 4:021010CrossRef Younis MI, Alsaleem F (2009) Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J Comput Nonlinear Dyn 4:021010CrossRef
30.
Zurück zum Zitat Münzer AM, Michael ZP, Star A (2013) Carbon nanotubes for the label-free detection of biomarkers. ACS Nano 7:7448–7453CrossRef Münzer AM, Michael ZP, Star A (2013) Carbon nanotubes for the label-free detection of biomarkers. ACS Nano 7:7448–7453CrossRef
31.
Zurück zum Zitat Heller I, Janssens AM, Männik J, Minot ED, Lemay SG, Dekker C (2008) Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett 8:591–595ADSCrossRef Heller I, Janssens AM, Männik J, Minot ED, Lemay SG, Dekker C (2008) Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett 8:591–595ADSCrossRef
32.
Zurück zum Zitat He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. BioMed Res Int 2013:578290. doi:10.1155/2013/578290 He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. BioMed Res Int 2013:578290. doi:10.​1155/​2013/​578290
34.
Zurück zum Zitat Elishakoff I, Versaci C, Maugeri N, Muscolino G (2011) Clamped-free single-walled carbon nanotube-based mass sensor treated as Bernoulli-Euler beam. J Nanotechnol Eng Med 2:021001CrossRef Elishakoff I, Versaci C, Maugeri N, Muscolino G (2011) Clamped-free single-walled carbon nanotube-based mass sensor treated as Bernoulli-Euler beam. J Nanotechnol Eng Med 2:021001CrossRef
35.
Zurück zum Zitat Sazonova V, Yaish Y, Üstünel H, Roundy D, Arias TA, McEuen PL (2004) A tunable carbon nanotube electromechanical oscillator. Nature 431:284–287ADSCrossRef Sazonova V, Yaish Y, Üstünel H, Roundy D, Arias TA, McEuen PL (2004) A tunable carbon nanotube electromechanical oscillator. Nature 431:284–287ADSCrossRef
36.
Zurück zum Zitat Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A (2012) A nanomechanical mass sensor with yoctogram resolution. Nat Nanotechnol 7:301–304ADSCrossRef Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A (2012) A nanomechanical mass sensor with yoctogram resolution. Nat Nanotechnol 7:301–304ADSCrossRef
37.
Zurück zum Zitat Zhang Y, Liu G, Han X (2005) Transverse vibrations of double-walled carbon nanotubes under compressive axial load. Phys Lett A 340:258–266ADSCrossRefMATH Zhang Y, Liu G, Han X (2005) Transverse vibrations of double-walled carbon nanotubes under compressive axial load. Phys Lett A 340:258–266ADSCrossRefMATH
38.
Zurück zum Zitat Ouakad HM, Younis MI (2010) Nonlinear dynamics of electrically actuated carbon nanotube resonators. J Comput Nonlinear Dyn 5:011009CrossRef Ouakad HM, Younis MI (2010) Nonlinear dynamics of electrically actuated carbon nanotube resonators. J Comput Nonlinear Dyn 5:011009CrossRef
39.
Zurück zum Zitat Younis MI (2011) MEMS linear and nonlinear statics and dynamics. Springer, New YorkCrossRef Younis MI (2011) MEMS linear and nonlinear statics and dynamics. Springer, New YorkCrossRef
40.
Zurück zum Zitat Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, New YorkMATH Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, New YorkMATH
41.
Zurück zum Zitat Nayfeh AH (1981) Introduction to perturbation techniques. Wiley, New YorkMATH Nayfeh AH (1981) Introduction to perturbation techniques. Wiley, New YorkMATH
42.
Zurück zum Zitat Younis MI, Abdel-Rahman EM, Nayfeh A (2003) A reduced-order model for electrically actuated microbeam-based MEMS. Microelectromech Syst J 12:672–680CrossRef Younis MI, Abdel-Rahman EM, Nayfeh A (2003) A reduced-order model for electrically actuated microbeam-based MEMS. Microelectromech Syst J 12:672–680CrossRef
43.
Zurück zum Zitat Abdel-Rahman EM, Younis MI, Nayfeh AH (2002) Characterization of the mechanical behavior of an electrically actuated microbeam. J Micromech Microeng 12:759CrossRef Abdel-Rahman EM, Younis MI, Nayfeh AH (2002) Characterization of the mechanical behavior of an electrically actuated microbeam. J Micromech Microeng 12:759CrossRef
44.
Zurück zum Zitat Bouchaala AM, Younis MI (2015) A model of electrostatically actuated MEMS and carbon nanotubes resonators for biological mass detection. In: Fakhfakh T, Daly HB, Aifaoui N, Chaari F (eds) Design and modeling of mechanical systems-II. Springer, Berlin, pp 501–512 Bouchaala AM, Younis MI (2015) A model of electrostatically actuated MEMS and carbon nanotubes resonators for biological mass detection. In: Fakhfakh T, Daly HB, Aifaoui N, Chaari F (eds) Design and modeling of mechanical systems-II. Springer, Berlin, pp 501–512
45.
Zurück zum Zitat Hajjaj AZ, Ramini A, Younis MI (2015) Experimental and analytical study of highly tunable electrostatically actuated resonant beams. J Micromech Microeng 25:125015CrossRef Hajjaj AZ, Ramini A, Younis MI (2015) Experimental and analytical study of highly tunable electrostatically actuated resonant beams. J Micromech Microeng 25:125015CrossRef
46.
Zurück zum Zitat Teva J, Abadal G, Torres F, Verd J, Perez-Murano F, Barniol N (2006) A femtogram resolution mass sensor platform based on SOI electrostatically driven resonant cantilever. Part II: sensor calibration and glycerine evaporation rate measurement. Ultramicroscopy 106:808–814CrossRef Teva J, Abadal G, Torres F, Verd J, Perez-Murano F, Barniol N (2006) A femtogram resolution mass sensor platform based on SOI electrostatically driven resonant cantilever. Part II: sensor calibration and glycerine evaporation rate measurement. Ultramicroscopy 106:808–814CrossRef
47.
Zurück zum Zitat Schmid S, Dohn S, Boisen A (2010) Real-time particle mass spectrometry based on resonant micro strings. Sensors 10:8092–8100CrossRef Schmid S, Dohn S, Boisen A (2010) Real-time particle mass spectrometry based on resonant micro strings. Sensors 10:8092–8100CrossRef
48.
Zurück zum Zitat Hayt WH, Buck JA (2001) Engineering electromagnetics. McGraw-Hill, New York Hayt WH, Buck JA (2001) Engineering electromagnetics. McGraw-Hill, New York
49.
Zurück zum Zitat Gabrielson B (1993) Mechanical–thermal noise in acoustic and vibration sensors. IEEE Trans Electron Devices 40:903–909ADSCrossRef Gabrielson B (1993) Mechanical–thermal noise in acoustic and vibration sensors. IEEE Trans Electron Devices 40:903–909ADSCrossRef
50.
Zurück zum Zitat Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32:110ADSCrossRef Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32:110ADSCrossRef
Metadaten
Titel
Analytical study of the frequency shifts of micro and nano clamped–clamped beam resonators due to an added mass
verfasst von
Adam Bouchaala
Ali H. Nayfeh
Mohammad I. Younis
Publikationsdatum
18.03.2016
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 1-2/2017
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0412-4

Weitere Artikel der Ausgabe 1-2/2017

Meccanica 1-2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.