Skip to main content
Erschienen in: Meccanica 15/2017

04.05.2017

Numerical calculation of air entrainment rates due to intake vortices

verfasst von: Hamed Sarkardeh

Erschienen in: Meccanica | Ausgabe 15/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, a numerical investigation was performed to estimate air entrainment rates due to intake vortices in different hydraulic conditions. The numerical model was verified with the experimental data. The agreement between numerical and experimental results for air entrainment rates and circulation was good. Regarding formed funnel shape flow pattern in the reservoir towards the horizontal intake, its boundaries at presence of vortices were analyzed. By considering the minimum air entrainment ratio as a new approach, critical submergence was also calculated numerically. Results showed that allowing minimum air entrainment ratio of β = 1 × 10−5 can cause critical submergence decreases at least about 12%. Moreover, turbulence analysis and discussion were performed in the presence of vortex at the intake. This numerical simulation may be helpful to make a deeper understanding in determining the amount of entrained air and turbulence analysis in the presence of vortex and the critical submergence at horizontal intakes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Knauss J (1987) Swirling flow problems at intakes. IAHR Hydraulic Structures Manual 1. A.A. Balkema, Rotterdam Knauss J (1987) Swirling flow problems at intakes. IAHR Hydraulic Structures Manual 1. A.A. Balkema, Rotterdam
4.
Zurück zum Zitat Rankine WJM (1858) Manual of applied mechanics. C. Griffen Co., LondonMATH Rankine WJM (1858) Manual of applied mechanics. C. Griffen Co., LondonMATH
10.
Zurück zum Zitat Roshan R, Sarkardeh H, Zarrati AR (2009) Vortex study on hydraulic model of Godar-e-Landar Dam and Hydropower plant. In: 5th international conference on computational and experimental methods in multiphase and complex flow, vol 63, pp 217–225, UK. doi: 10.2495/MPF090191 Roshan R, Sarkardeh H, Zarrati AR (2009) Vortex study on hydraulic model of Godar-e-Landar Dam and Hydropower plant. In: 5th international conference on computational and experimental methods in multiphase and complex flow, vol 63, pp 217–225, UK. doi: 10.​2495/​MPF090191
12.
Zurück zum Zitat Amiri SM, Zarrati AR, Roshan R, Sarkardeh H (2011) Surface vortex prevention at power intakes by horizontal plates. J Water Manag (ICE) 164(4):193–200. doi:10.1680/wama.1000009 Amiri SM, Zarrati AR, Roshan R, Sarkardeh H (2011) Surface vortex prevention at power intakes by horizontal plates. J Water Manag (ICE) 164(4):193–200. doi:10.​1680/​wama.​1000009
15.
Zurück zum Zitat Sarkardeh H, Jabbari E, Zarrati AR, Tavakkol S (2013) Velocity field in a reservoir in the presence of an air-core vortex. J Water Manag (ICE) 164(4):193–200. doi:10.1680/wama.13.00046 Sarkardeh H, Jabbari E, Zarrati AR, Tavakkol S (2013) Velocity field in a reservoir in the presence of an air-core vortex. J Water Manag (ICE) 164(4):193–200. doi:10.​1680/​wama.​13.​00046
16.
Zurück zum Zitat Azarpira M, Sarkardeh H, Tavakkol S, Roshan R, Bakhshi H (2014) Vortices in dam reservoir: a case study of Karun III dam. Sadhana 39(5):1201–1209CrossRef Azarpira M, Sarkardeh H, Tavakkol S, Roshan R, Bakhshi H (2014) Vortices in dam reservoir: a case study of Karun III dam. Sadhana 39(5):1201–1209CrossRef
17.
Zurück zum Zitat Khanarmuei MR, Rahimzadeh H, Sarkardeh H (2014) Investigating the effect of intake withdrawal direction on critical submergence and strength of vortices. Modares Mech Eng 14(10):35–42 (In Persian) Khanarmuei MR, Rahimzadeh H, Sarkardeh H (2014) Investigating the effect of intake withdrawal direction on critical submergence and strength of vortices. Modares Mech Eng 14(10):35–42 (In Persian)
18.
Zurück zum Zitat Khanarmuei MR, Rahimzadeh H, Kakuei AR, Sarkardeh H (2016) Effect of vortex formation on sediment transport at dual pipe intakes. SADHANA 41(9):1055–1061. doi:10.1007/s12046-016-0531-6 Khanarmuei MR, Rahimzadeh H, Kakuei AR, Sarkardeh H (2016) Effect of vortex formation on sediment transport at dual pipe intakes. SADHANA 41(9):1055–1061. doi:10.​1007/​s12046-016-0531-6
19.
Zurück zum Zitat Takata I, Kawata Y, Kobayashi T, Morinishi Y (1992) Large eddy simulation of unsteady turbulent swirl flow in a pump intake. In: Proceedings of institution of computational fluid dynamics. Elsevier applied science, USA, pp 255–261 Takata I, Kawata Y, Kobayashi T, Morinishi Y (1992) Large eddy simulation of unsteady turbulent swirl flow in a pump intake. In: Proceedings of institution of computational fluid dynamics. Elsevier applied science, USA, pp 255–261
22.
Zurück zum Zitat Khadem Rabe B, Ghoreishi Najafabadi SH, Sarkardeh H (2016) Numerical simulation of anti-vortex devices at water intakes. Proc Inst Civ Eng Water Manag. doi:10.1680/jwama.16.00051 Khadem Rabe B, Ghoreishi Najafabadi SH, Sarkardeh H (2016) Numerical simulation of anti-vortex devices at water intakes. Proc Inst Civ Eng Water Manag. doi:10.​1680/​jwama.​16.​00051
23.
Zurück zum Zitat Khadem Rabe B, Ghoreishi Najafabadi SH, Sarkardeh H (2017) Numerical simulation of air-core vortex at intake. J Curr Sci 112(11):435–448 Khadem Rabe B, Ghoreishi Najafabadi SH, Sarkardeh H (2017) Numerical simulation of air-core vortex at intake. J Curr Sci 112(11):435–448
24.
Zurück zum Zitat Suerich-Gulick F, Gaskin S, Villeneuve M, Holder G, Parkinson E (2006) Experimental and numerical analysis of free surface vortices at a hydropower intake. In: 7th international conference on hydroscience and engineering (ICHE-2006), USA Suerich-Gulick F, Gaskin S, Villeneuve M, Holder G, Parkinson E (2006) Experimental and numerical analysis of free surface vortices at a hydropower intake. In: 7th international conference on hydroscience and engineering (ICHE-2006), USA
25.
Zurück zum Zitat Okamura T, Kyoji K, Matsui J (2007) CFD prediction and model experiment on suction vortices in pump sump. In: Proceedings of 9th Asian international conference on fluid machinery, Korea Okamura T, Kyoji K, Matsui J (2007) CFD prediction and model experiment on suction vortices in pump sump. In: Proceedings of 9th Asian international conference on fluid machinery, Korea
26.
Zurück zum Zitat Abir I, Annie-Claude B, Gerard B (2008) Numerical simulation of flow field formed in water pump sump. In: 24th symposium on hydraulic machinery and systems, Argentina Abir I, Annie-Claude B, Gerard B (2008) Numerical simulation of flow field formed in water pump sump. In: 24th symposium on hydraulic machinery and systems, Argentina
27.
Zurück zum Zitat Lucino C, Liscia S, Duró G (2010) Vortex detection in pump sumps by means of CFD. In: XXIV Latin American Congress Hydraulics Punta Del Este, Uruguay Lucino C, Liscia S, Duró G (2010) Vortex detection in pump sumps by means of CFD. In: XXIV Latin American Congress Hydraulics Punta Del Este, Uruguay
28.
Zurück zum Zitat Sarkardeh H, Zarrati AR, Jabbari E, Marosi M (2014) Numerical Simulation and analysis of flow in a reservoir in the presence of vortex. J Eng Appl Comput Fluid Mech 8(4):598–608. doi:10.1080/19942060.2014.11083310 Sarkardeh H, Zarrati AR, Jabbari E, Marosi M (2014) Numerical Simulation and analysis of flow in a reservoir in the presence of vortex. J Eng Appl Comput Fluid Mech 8(4):598–608. doi:10.​1080/​19942060.​2014.​11083310
29.
Zurück zum Zitat Papillon B, Kirejczyk J, Sabourin M (2000) Atmospheric air admission in hydroturbines. In: Proceedings of HydroVision Papillon B, Kirejczyk J, Sabourin M (2000) Atmospheric air admission in hydroturbines. In: Proceedings of HydroVision
30.
Zurück zum Zitat Poullikkas A (2000) Effects of entrained air on the performance of nuclear reactor cooling pumps. In: Proceedings of Melecon 2000: information technology and electrotechnology for the Mediterranean countries, pp 1028–1031 Poullikkas A (2000) Effects of entrained air on the performance of nuclear reactor cooling pumps. In: Proceedings of Melecon 2000: information technology and electrotechnology for the Mediterranean countries, pp 1028–1031
32.
Zurück zum Zitat Iversen HW (1953) Studies of submergence requirements of high specific-speed pumps. Trans ASME 75(4):635–641 Iversen HW (1953) Studies of submergence requirements of high specific-speed pumps. Trans ASME 75(4):635–641
33.
Zurück zum Zitat Denny DF, Young GHJ (1957) The prevention of vortices and swirl at intakes. In: Proceedings of 7th IAHR Congress, Lisbon, Portugal Denny DF, Young GHJ (1957) The prevention of vortices and swirl at intakes. In: Proceedings of 7th IAHR Congress, Lisbon, Portugal
34.
Zurück zum Zitat Hattersley RT (1965) Hydraulic design of pump intakes. J Hydraul Div 91(2):223–249 Hattersley RT (1965) Hydraulic design of pump intakes. J Hydraul Div 91(2):223–249
37.
Zurück zum Zitat Haindl K (1959) Contribution to air entrainment by a vortex. In: Proceedings of 8th IAHR Congress, Montreal, Canada Haindl K (1959) Contribution to air entrainment by a vortex. In: Proceedings of 8th IAHR Congress, Montreal, Canada
38.
Zurück zum Zitat Jain AK, Ranga Raju KG, Garde RJ (1978) Vortex formation at vertical pipe intakes. J Hydraul Div 104(10):1429–1445 Jain AK, Ranga Raju KG, Garde RJ (1978) Vortex formation at vertical pipe intakes. J Hydraul Div 104(10):1429–1445
40.
Zurück zum Zitat Möller G, Detert M, Boes RM (2012) Air entrainment due to vortices: state-of-the-art. In: Proceedings of 2nd IAHR Europe Congress, Munich, Germany Möller G, Detert M, Boes RM (2012) Air entrainment due to vortices: state-of-the-art. In: Proceedings of 2nd IAHR Europe Congress, Munich, Germany
43.
Zurück zum Zitat Möller G, Boes RM (2013) Vortex-Induced Air Entrainment Rate at Intakes. Versuchsanstalt für Wasserbau Hydrologie und Glaziologie der Eidgenössischen Technischen Hochschule Zürich, Switzerland Möller G, Boes RM (2013) Vortex-Induced Air Entrainment Rate at Intakes. Versuchsanstalt für Wasserbau Hydrologie und Glaziologie der Eidgenössischen Technischen Hochschule Zürich, Switzerland
44.
Zurück zum Zitat Gordon JL (1970) Vortices at intake structures. J Water Power 22(4):137–138 Gordon JL (1970) Vortices at intake structures. J Water Power 22(4):137–138
Metadaten
Titel
Numerical calculation of air entrainment rates due to intake vortices
verfasst von
Hamed Sarkardeh
Publikationsdatum
04.05.2017
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 15/2017
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0687-0

Weitere Artikel der Ausgabe 15/2017

Meccanica 15/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.