Skip to main content
Erschienen in: Metallurgist 5-6/2021

30.09.2021

Influence of Radial-Shear Rolling Conditions on the Metal Consumption Rate and Properties of D16 Aluminum Alloy Rods

verfasst von: Yu. V. Gamin, S. P. Galkin, B. A. Romantsev, A. N. Koshmin, A. V. Goncharuk, M. V. Kadach

Erschienen in: Metallurgist | Ausgabe 5-6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of five cases of temperature-and-speed conditions in radial-shear rolling (RSR) of D16 alloy is analyzed. The temperature of the rod after each pass is obtained from the simulation results. With decrease in the heating temperature of the billet, the self-heating temperature of the rod during RSR increases. Depending on the selected temperature, rolling speed, reduction per pass, and rod dimensions, the temperature change relative to the initial heating can be more than 100°C. The length and volume of the back-end defect are calculated for each of the temperature-and-speed conditions. With increase in the elongation ratio, the length of the back-end defect increases, and its volume decreases. The smallest back-end defect is observed in rods produced gradually decreasing the rolling temperature in each pass (for a 6 m rod, the scrap losses are 2.2% of the volume of rolled metal). For one of the temperature-and-speed conditions, the specific deformation energy consumption that does not exceed 24–35% of the total energy consumption is obtained. The rods produced by RSR have better strength and plasticity (σB = 452–486 MPa, σy = 262–290 MPa, δ = 13.0–16.5%) than those required by the GOST 21488–97 State Standard.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Troeger and E. Starke, Jr., “Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy,” Mater. Sci. Eng.: A, 277, 102–113 (2000); doi.org/10.1016/S0921-5093(99)00543-2. L. Troeger and E. Starke, Jr., “Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy,” Mater. Sci. Eng.: A, 277, 102–113 (2000); doi.​org/​10.​1016/​S0921-5093(99)00543-2.
2.
Zurück zum Zitat Yu. F. Shevakin, V. N. Chernyshev, R. L. Shatalov, and N. A. Mochalov, Metal Forming [in Russian], Intermet Inzhiniring, Moscow (2013). Yu. F. Shevakin, V. N. Chernyshev, R. L. Shatalov, and N. A. Mochalov, Metal Forming [in Russian], Intermet Inzhiniring, Moscow (2013).
4.
Zurück zum Zitat C.-J. Shi and X.-G. Chen, “Hot deformation behavior and microstructural evolution of homogenized 7150 aluminum alloys micro-alloyed with Zr and V,” in: Proc. 13th Int. Conf. on Aluminum Alloys (ICAA13) (2012), pp. 1599–1605; doi.org/10.1007/978-3-319-48761-8_24. C.-J. Shi and X.-G. Chen, “Hot deformation behavior and microstructural evolution of homogenized 7150 aluminum alloys micro-alloyed with Zr and V,” in: Proc. 13th Int. Conf. on Aluminum Alloys (ICAA13) (2012), pp. 1599–1605; doi.​org/​10.​1007/​978-3-319-48761-8_​24.
5.
Zurück zum Zitat L. Chen, G. Zhao, J. Gong, X. Chen, and M. Chen, “Hot deformation behaviors and processing maps of 2024 aluminum alloy in as-cast and homogenized states,” J. Mater. Eng. Perform., 24, 5002–5012 (2015); doi.org/10.1007/s11665-015-1734-4. L. Chen, G. Zhao, J. Gong, X. Chen, and M. Chen, “Hot deformation behaviors and processing maps of 2024 aluminum alloy in as-cast and homogenized states,” J. Mater. Eng. Perform., 24, 5002–5012 (2015); doi.​org/​10.​1007/​s11665-015-1734-4.
7.
Zurück zum Zitat Y. Gamin, A. Koshmin, and X. Ta, “Analysis of radial-shear rolling process parameters of aluminum alloys based on FEM modeling,” in: Proc. Int. Sci.-Pract. Conf. on Materials Science, Shape-Generating Technologies and Equipment 2020, 315, 11001 (2020); doi.org/10.1051/matecconf/202031511001. Y. Gamin, A. Koshmin, and X. Ta, “Analysis of radial-shear rolling process parameters of aluminum alloys based on FEM modeling,” in: Proc. Int. Sci.-Pract. Conf. on Materials Science, Shape-Generating Technologies and Equipment 2020, 315, 11001 (2020); doi.​org/​10.​1051/​matecconf/​202031511001.
8.
Zurück zum Zitat H. McQueen, “Development of dynamic recrystallization theory,” Mater. Sci. Eng.: A, 387-389, 203–208 (2004); doi.org/10.1016/ j.msea.2004.01.064. H. McQueen, “Development of dynamic recrystallization theory,” Mater. Sci. Eng.: A, 387-389, 203–208 (2004); doi.​org/​10.​1016/ j.msea.2004.01.064.
12.
Zurück zum Zitat S. Gourdet and F. Montheillet, “An experimental study of the recrystallization mechanism during hot deformation of aluminium,” Mater. Sci. Eng.: A, 283, No. 1-2, 274–288 (2000); doi.org/10.1016/S0921-5093(00)00733-4. S. Gourdet and F. Montheillet, “An experimental study of the recrystallization mechanism during hot deformation of aluminium,” Mater. Sci. Eng.: A, 283, No. 1-2, 274–288 (2000); doi.​org/​10.​1016/​S0921-5093(00)00733-4.
13.
Zurück zum Zitat C. Sellars and Q. Zhu, “Microstructural modelling of aluminium alloys during thermomechanical processing,” Mater. Sci. Eng.: A, 280, No. 1, 1–7 (2000); doi.org/10.1016/S0921-5093(99)00648-6. C. Sellars and Q. Zhu, “Microstructural modelling of aluminium alloys during thermomechanical processing,” Mater. Sci. Eng.: A, 280, No. 1, 1–7 (2000); doi.​org/​10.​1016/​S0921-5093(99)00648-6.
15.
Zurück zum Zitat R. L. Shatalov and V. A. Medvedev, “Regulation of the rolling temperature of blanks of steel vessels in a rolling-press line for the stabilization of mechanical properties,” Metallurgist, 63, No. 9-10, 1071–1076 (2019). R. L. Shatalov and V. A. Medvedev, “Regulation of the rolling temperature of blanks of steel vessels in a rolling-press line for the stabilization of mechanical properties,” Metallurgist, 63, No. 9-10, 1071–1076 (2019).
16.
Zurück zum Zitat R. L. Shatalov and V. A. Medvedev, “Effect of deformed workpiece temperature inhomogeneity on mechanical properties of thin-walled steel vessels during treatment in a rolling and pressing line,” Metallurgist, 63, No. 3-4, 176–182 (2019). R. L. Shatalov and V. A. Medvedev, “Effect of deformed workpiece temperature inhomogeneity on mechanical properties of thin-walled steel vessels during treatment in a rolling and pressing line,” Metallurgist, 63, No. 3-4, 176–182 (2019).
17.
Zurück zum Zitat B. Karpov, M. Skripalenko, S. Galkin, M. Skripalenko, S. Samusev, H. Tran, and S. Pavlov, “Studying the nonstationary stages of screw rolling of billets with profiled ends,” Metallurgist, 61, No. 3-4, 257–264 (2017); doi.org/10.1007/s11015-017-0486-9. B. Karpov, M. Skripalenko, S. Galkin, M. Skripalenko, S. Samusev, H. Tran, and S. Pavlov, “Studying the nonstationary stages of screw rolling of billets with profiled ends,” Metallurgist, 61, No. 3-4, 257–264 (2017); doi.​org/​10.​1007/​s11015-017-0486-9.
18.
Zurück zum Zitat Y. Gamin, T. Akopyan, A. Koshmin, A. Dolbachev, A. Aleshchenko, S. Galkin, and B. Romantsev, “Investigation of the microstructure evolution and properties of A1050 aluminum alloy during radial-shear rolling using FEM analysis,” The Int. J. Adv. Manufact. Technol., 108, 695–704 (2020); doi.org/10.1007/s00170-020-05227-8. Y. Gamin, T. Akopyan, A. Koshmin, A. Dolbachev, A. Aleshchenko, S. Galkin, and B. Romantsev, “Investigation of the microstructure evolution and properties of A1050 aluminum alloy during radial-shear rolling using FEM analysis,” The Int. J. Adv. Manufact. Technol., 108, 695–704 (2020); doi.​org/​10.​1007/​s00170-020-05227-8.
19.
Zurück zum Zitat R. Valiev, R. Islamgaliev, and I. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Progr. Mater. Sci., 45, No. 2, 103–189 (2000); doi.org/10.1016/S0079-6425(99)00007-9. R. Valiev, R. Islamgaliev, and I. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Progr. Mater. Sci., 45, No. 2, 103–189 (2000); doi.​org/​10.​1016/​S0079-6425(99)00007-9.
21.
Zurück zum Zitat T. Akopyan, Y. Gamin, S. Galkin, A. Prosviryakov, A. Aleshchenko, M. Noshin, A. Koshmin, and A. Fomin, “Radial-shear rolling of high-strength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties,” Mater. Sci. Eng.: A, 786, 139–424 (2020); doi.org/10.1016/j.msea.2020.139424. T. Akopyan, Y. Gamin, S. Galkin, A. Prosviryakov, A. Aleshchenko, M. Noshin, A. Koshmin, and A. Fomin, “Radial-shear rolling of high-strength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties,” Mater. Sci. Eng.: A, 786, 139–424 (2020); doi.​org/​10.​1016/​j.​msea.​2020.​139424.
22.
Zurück zum Zitat A. Hensel and T. Spittel, Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, Germany (1978). A. Hensel and T. Spittel, Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, Germany (1978).
23.
Zurück zum Zitat Extruded Aluminum and Aluminum-Alloy Rods: Specifications [in Russian], GOST 21488–97, State Standard, IPK Izd. Standartov, Minsk (2001). Extruded Aluminum and Aluminum-Alloy Rods: Specifications [in Russian], GOST 21488–97, State Standard, IPK Izd. Standartov, Minsk (2001).
Metadaten
Titel
Influence of Radial-Shear Rolling Conditions on the Metal Consumption Rate and Properties of D16 Aluminum Alloy Rods
verfasst von
Yu. V. Gamin
S. P. Galkin
B. A. Romantsev
A. N. Koshmin
A. V. Goncharuk
M. V. Kadach
Publikationsdatum
30.09.2021
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 5-6/2021
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-021-01202-0

Weitere Artikel der Ausgabe 5-6/2021

Metallurgist 5-6/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.