Skip to main content
Log in

A comparative study on the mechanical and barrier characteristics of polyimide nanocomposite films filled with nanoparticles of planar and tubular morphology

  • Published:
Mechanics of Composite Materials Aims and scope

Polyimide (PI) films based on poly(pyromellitic dianhydride-co-4,4′-oxydianiline) (PI-PM) were filled with different nanoparticles, such as organically modified montmorillonite (MMT), vapor-grown carbon nanofibers (VGCF), and silicate nanotubes (SNT) of different concentration.. Rheological measurements and structural investigations showed a relatively good dispersion of the nanoparticles in the PI matrix to an extent that depended on the type and morphology of the nanoparticles used. The mechanical (tensile modulus, strength, and deformation at break) and the barrier (oxygen permeability) properties of PI-PM nanocomposite films were investigated. The polyimide nanocomposites filled with SNT and tubular VGCF nanoparticles showed an increased tensile modulus with increasing volume concentration of the nanoparticles without a catastrophic decrease in the elongation at break. In addition, the MMT particles, chemically modified with 4,4'-bis-(4′′-aminophenoxy)diphenylsulfone, significantly improved the barrier properties of the PI-PM films, which exceeded those of the nanocomposites filled with VGCF or SNT. The relative poor oxygen barrier and mechanical properties of the PI-PM/VGCF nanocomposite films are ascribed to the relative weak adhesion between the VGCF and the polyimide matrix, which was confirmed by scanning electron microscopy of the fracture surface of these films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Fischer, “Polymer nanocomposites: From fundamental research to specific applications,” Mater. Sci. Eng., 23, 763–772 (2003).

    Article  Google Scholar 

  2. F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, “Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview,” J. Compos. Mater., 40, 1511–1575 (2006).

    Article  CAS  Google Scholar 

  3. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: A review from preparation to processing,” Progr. Polym. Sci., 28, 1539–1641 (2003).

    Article  CAS  Google Scholar 

  4. Q. Zeng, A. Yu, G. Lu, and D. Paul, “Clay-based polymer nanocomposites: Research and commercial development,” J. Nanosci. Nanotechn., 5, 1574–1592 (2005).

    Article  CAS  Google Scholar 

  5. V. E. Yudin, J. U. Otaigbe, V. M. Svetlichnyi, E. N. Korytkova, O. V. Almjasheva, and V. V. Gusarov, “Effects of nanofiller morphology and aspect ratio on the rheo-mechanical properties of polyimide nanocomposites,” eXPRESS Polym. Lett., 2, 485–493 (2008).

    Article  CAS  Google Scholar 

  6. V. E. Yudin, J. U. Otaigbe, S. V. Gladchenko, B. G. Olson, S. I. Nazarenko, E. N. Korytkova, and V. V. Gusarov, “New polyimide nanocomposites based on silicate type nanotubes: Dispersion, processing and properties,” Polymer, 48, 1306–1315 (2007).

    Article  CAS  Google Scholar 

  7. V. E. Yudin, J. U. Otaigbe, L. T. Drzal, and V. M. Svetlichnyi, “Novel semicrystalline thermoplastic R-BAPB type polyimide matrix reinforced by graphite nanoplatelets and carbon nanoparticles,” Adv. Compos. Lett., 15, 137–143 (2006).

    Google Scholar 

  8. K. Takashi, V. E. Yudin, J. U. Otaigbe, and V. M. Svetlichnyi, “Compatibilized polyimide (R-BAPS)/BAPS-modified clay nanocomposites with improved dispersion and properties,” Polymer, 48, 7130–7138 (2007).

    Article  Google Scholar 

  9. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L. A. Laius, Polyimides — Thermally Stable Polymers, Plenum Publ. Corp., New York (1987).

    Google Scholar 

  10. E. N. Korytkova, A. V. Maslov, L. N. Pivovarova, I. A. Drozdova, and V. V. Gusarov, “Formation of Mg3Si2O5(OH)4 nanotubes under hydrothermal conditions,” Glass Phys. Chem., 30, 51–55 (2004).

    Article  CAS  Google Scholar 

  11. E. N. Korytkova, A. V. Maslov, L. N. Pivovarova, Y. V. Polegotchenkova, V. F. Povinich, and V. V. Gusarov, “Formation of Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 nanotubes under high temperature and pressure,” Inorgan. Mater., 41, 1–7 (2005).

    Google Scholar 

  12. V. E. Yudin, G. Divoux, J. U. Otaigbe, and V. M. Svetlichnyi, “Synthesis and rheological properties of oligoimide/ montmorillonite nanocomposites,” Polymer, 46, 10866–10872 (2005).

    Article  CAS  Google Scholar 

  13. E. Garboczi, K. Snyder, J. Douglas, and M. Thorpe, “Geometrical percolation threshold of overlapping ellipsoids,” Phys. Rev. E, 52, 819–828 (1995).

    Article  CAS  Google Scholar 

  14. T. Ogasawara, Y. Ishida, and T. Ishikava, “Properties of vapor-grown carbon nanofiber/phenylethynyl terminated polyimide composite,” Adv. Compos. Mater., 13, 215–226 (2004).

    Article  CAS  Google Scholar 

  15. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotubepolystyrene composites,” Appl. Phys. Lett., 76, 2868–2870 (2000).

    Article  CAS  Google Scholar 

  16. P. K. Mallick, Fiber-Reinforced Composites, Marcel Dekker, New York (1993).

    Google Scholar 

  17. S. Piperno, I. Kaplan-Ashiri, S. R. Cohen, R. Popovitz-Biro, H. D. Wagner, R. Tenne, E. Foresti, I. G. Lesci, and N. Roveri, “Characterization of geoinspired and synthetic chrysotile nanotubes by atomic force microscopy and transmission electron microscopy,” Adv. Funct. Mater., 17, 3332–3338 (2007).

    Article  CAS  Google Scholar 

  18. R. L. Jacobsen, T. M. Tritt, J. R. Guth, A. C. Ehrlich, and D. J. Gillespie, “Mechanical properties of vapor-grown carbon fibers,” Carbon, 33, 1217–1221 (1995).

    Article  CAS  Google Scholar 

  19. B. G. Olson, J. J. Decker, S. I. Nazarenko, V. E. Yudin, J. U. Otaigbe, E. N. Korytkova, and V. V. Gusarov, “Aggregation of synthetic chrysotile nanotubes in the bulk and in solution probed by nitrogen adsorption and viscosity measurements,” J. Phys. Chem.: Part C, 112, 12943–12950 (2008).

    Article  CAS  Google Scholar 

  20. X. Chen, K. Yoon, C. Burger, I. Sics, D. Fang, B. S. Hsiao, and B. Chu, “In-situ x-ray scattering studies of a unique toughening mechanism in surface-modified carbon nanofiber/UHMWPE nanocomposite films,” Macromolecules, 38, 3883–3893 (2005).

    Article  CAS  Google Scholar 

  21. S. A. Stern, Y. Mi, H. Yamamoto, and A. K. St. Clair, “Structure/permeability relationships of polyimide membranes: Applications to the separation of gas mixtures,” J. Polym. Sci., Part B, 27, 1887–1909 (1989).

    Article  CAS  Google Scholar 

  22. L. E. Nielsen, “Models for the permeability of filled polymer systems,” J. Macromol. Sci., Part A, 1, 929–942 (1967).

    Article  CAS  Google Scholar 

  23. G. H. Fredrickson and E. S. G. Shaqfeh, “Heat and mass transport in composites of aligned slender fibers,” Phys. Fluids A: Fluid Dynamics, 1, 3–20 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Yudin.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 47, No. 3, pp. 485–496 , May-June, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yudin, V.E., Otaigbe, J.U., Nazarenko, S.I. et al. A comparative study on the mechanical and barrier characteristics of polyimide nanocomposite films filled with nanoparticles of planar and tubular morphology. Mech Compos Mater 47, 335–342 (2011). https://doi.org/10.1007/s11029-011-9212-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-011-9212-z

Keywords

Navigation