Skip to main content

Advertisement

Log in

EGCG ameliorates the hypoxia-induced apoptosis and osteogenic differentiation reduction of mesenchymal stem cells via upregulating miR-210

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The healing process of fractured bone is affected by the multiple factors regulating the growth and differentiation of osteoblasts and bone mesenchymal stem cells (MSCs), however, such markers and molecular events need to be orchestrated in details. This study investigated the effect of polyphenol(-)-epigallocatechin-3-gallate (EGCG) on the hypoxia-induced apoptosis and osteogenic differentiation of human bone marrow-derived MSCs, examined the miR-210 induction by EGCG, explored the target inhibition of the expression of receptor tyrosine kinase ligand ephrin-A3 (EFNA3) by miR-210, and then determined the association of the miR-210 promotion with the hypoxia-induced apoptosis and osteogenic differentiation. Results demonstrated that EGCG treatment significantly inhibited the hypoxia-induced apoptosis in MSCs and promoted the level of alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP-2), propeptide of type I procollagen I (PINP) and runt-related transcription factor 2 (RUNX2) in MSCs under either normoxia or hypoxia. Moreover, the EGCG treatment upregulated the miR-210 expression, in an association with EFNA3 downregulation; and the miR-210 upregulation significantly downregulated the expression of EFNA3 via the specific binding to the 3′ UTR of EFNA3. In addition, the manipulated miR-210 upregulation exerted amelioration on the hypoxia-induced apoptosis and on the hypoxia-reduced expression of ALP, BMP-2, PINP and RUNX2 in MSCs. In summary, our study indicated the protective role of EGCG in response to hypoxia and promontory role to osteogenic differentiation in MSCs via upregulating miR-210 and downregulating the expression of miR-210-targeted EFNA3. Our study implies the protective role of EGCG in the hypoxia-induced impairment in MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EGCG:

Polyphenol(-)-epigallocatechin-3-gallate

EFNA3:

Receptor tyrosine kinase ligand ephrin-A3

MSCs:

Mesenchymal stem cells

ALP:

Alkaline phosphatase

BMP-2:

Bone morphogenetic protein 2

PINP:

Propeptide of type I procollagen I

RUNX2:

Runt-related transcription factor 2

HIFs:

Hypoxia-inducible factors

VEGF:

Vascular endothelial growth factor

OPN:

Osteopontin

OCN:

Osteocalcin

PTP-1B:

Protein tyrosine phosphatase-1B

References

  1. Louisia S, Stromboni M, Meunier A, Sedel L, Petite H (1999) Coral grafting supplemented with bone marrow. J Bone Joint Surg Br 81:719–724

    Article  CAS  PubMed  Google Scholar 

  2. Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355

    Article  CAS  PubMed  Google Scholar 

  3. Yao W, Lane NE (2015) Targeted delivery of mesenchymal stem cells to the bone. Bone 70:62–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Heppenstall RB, Goodwin CW, Goodwin CW, Brighton CT (1976) Fracture healing in the presence of chronic hypoxia. J Bone Joint Surg Am 58:1153–1156

    CAS  PubMed  Google Scholar 

  5. Warren SM, Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Bouletreau PJ, Longaker MT (2001) Hypoxia regulates osteoblast gene expression. J Surg Res 99:147–155

    Article  CAS  PubMed  Google Scholar 

  6. Akeno N, Czyzyk-Krzeska MF, Gross TS, Clemens TL (2001) Hypoxia induces vascular endothelial growth factor gene transcription in human osteoblast-like cells through the hypoxia-inducible factor-2alpha. Endocrinology 142:959–962

    CAS  PubMed  Google Scholar 

  7. Bouletreau PJ, Warren SM, Spector JA, Peled ZM, Gerrets RP, Greenwald JA, Longaker MT (2002) Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg 109:2384–2397

    Article  PubMed  Google Scholar 

  8. Wang HS, Han JS (2014) Research progress on combat trauma treatment in cold regions. Mil Med Res. 1:8

    Article  PubMed Central  PubMed  Google Scholar 

  9. Naik AA, Xie C, Zuscik MJ, Kingsley P, Schwarz EM, Awad H, Guldberg R, Drissi H, Puzas JE, Boyce B, Zhang X, O’Keefe RJ (2009) Reduced COX-2 expression in aged mice is associated with impaired fracture healing. J Bone Miner Res 24:251–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gerstenfeld LC, Thiede M, Seibert K, Mielke C, Phippard D, Svagr B, Cullinane D, Einhorn TA (2003) Differential inhibition of fracture healing by non-selective and cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs. J Orthop Res 21:670–675

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O’Keefe RJ (2002) Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest 109:1405–1415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kolar P, Schmidt-Bleek K, Schell H, Gaber T, Toben D, Schmidmaier G, Perka C, Buttgereit F, Duda GN (2010) The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B 16:427–434

    Article  Google Scholar 

  13. Lu C, Saless N, Wang X, Sinha A, Decker S, Kazakia G, Hou H, Williams B, Swartz HM, Hunt TK, Miclau T, Marcucio RS (2013) The role of oxygen during fracture healing. Bone 52:220–229

    Article  CAS  PubMed  Google Scholar 

  14. Scaringi R, Piccoli M, Papini N, Cirillo F, Conforti E, Bergante S, Tringali C, Garatti A, Gelfi C, Venerando B, Menicanti L, Tettamanti G, Anastasia L (2013) NEU3 sialidase is activated under hypoxia and protects skeletal muscle cells from apoptosis through the activation of the epidermal growth factor receptor signaling pathway and the hypoxia-inducible factor (HIF)-1alpha. J Biol Chem 288:3153–3162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Piret JP, Mottet D, Raes M, Michiels C (2002) Is HIF-1alpha a pro- or an anti-apoptotic protein. Biochem Pharmacol 64:889–892

    Article  CAS  PubMed  Google Scholar 

  16. Zhao X, Wang K, Hu F, Qian C, Guan H, Feng K, Zhou Y, Chen Z (2015) MicroRNA-101 protects cardiac fibroblasts from hypoxia-induced apoptosis via inhibition of the TGF-beta signaling pathway. Int J Biochem Cell Biol 65:155–164

    Article  CAS  PubMed  Google Scholar 

  17. Ejtehadifar M, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Dehdilani N, Abbasi P, Molaeipour Z, Saleh M (2015) The effect of hypoxia on mesenchymal stem cell biology. Adv Pharm Bull 5:141–149

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sun G, Peng H (2015) HIF-1alpha-induced microRNA-210 reduces hypoxia-induced osteoblast MG-63 cell apoptosis. Biosci Biotechnol Biochem 79:1232–1239

    Article  CAS  PubMed  Google Scholar 

  19. Kimura K, Nagano M, Salazar G, Yamashita T, Tsuboi I, Mishima H, Matsushita S, Sato F, Yamagata K, Ohneda O (2014) The role of CCL5 in the ability of adipose tissue-derived mesenchymal stem cells to support repair of ischemic regions. Stem Cells Dev 23:488–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Mountziaris PM, Dennis LE, Mountziaris I, Sing DC, Kasper FK, Mikos AG (2013) Effect of temporally patterned TNF-alpha delivery on in vitro osteogenic differentiation of mesenchymal stem cells cultured on biodegradable polymer scaffolds. J Biomater Sci Polym Ed 24:1794–1813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lee JS, Park JC, Kim TW, Jung BJ, Lee Y, Shim EK, Park S, Choi EY, Cho KS, Kim CS (2015) Human bone marrow stem cells cultured under hypoxic conditions present altered characteristics and enhanced in vivo tissue regeneration. Bone 78:34–45

    Article  PubMed  Google Scholar 

  22. Hu N, Wang C, Liang X, Yin L, Luo X, Liu B, Zhang H, Shui W, Nan G, Wang N, Wu N, Chen X, He Y, Wen S, Deng F, Zhang H, Liao Z, Luu HH, Haydon RC, He TC, Huang W (2013) Inhibition of histone deacetylases potentiates BMP9-induced osteogenic signaling in mouse mesenchymal stem cells. Cell Physiol Biochem 32:486–498

    Article  CAS  PubMed  Google Scholar 

  23. Gao Y, Li C, Wang H, Fan G (2015) Acceleration of bone-defect repair by using A-W MGC loaded with BMP2 and triple point-mutant HIF1alpha-expressing BMSCs. J Orthop Surg Res 10:83

    Article  PubMed Central  PubMed  Google Scholar 

  24. Huang J, Liu L, Feng M, An S, Zhou M, Li Z, Qi J, Shen H (2015) Effect of CoCl2 on fracture repair in a rat model of bone fracture. Mol Med Rep 12:5951–5956

    CAS  PubMed  Google Scholar 

  25. Jiang C, Sun J, Dai Y, Cao P, Zhang L, Peng S, Zhou Y, Li G, Tang J, Xiang J (2015) HIF-1A and C/EBPs transcriptionally regulate adipogenic differentiation of bone marrow-derived MSCs in hypoxia. Stem Cell Res Ther 6:21

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ambros V (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113:673–676

    Article  CAS  PubMed  Google Scholar 

  28. You L, Gu W, Chen L, Pan L, Chen J, Peng Y (2014) MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3 K/Akt signaling pathway. Int J Clin Exp Pathol 7:7249–7261

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Murata K, Ito H, Yoshitomi H, Yamamoto K, Fukuda A, Yoshikawa J, Furu M, Ishikawa M, Shibuya H, Matsuda S (2014) Inhibition of miR-92a enhances fracture healing via promoting angiogenesis in a model of stabilized fracture in young mice. J Bone Miner Res 29:316–326

    Article  CAS  PubMed  Google Scholar 

  30. Jeon ES, Shin JH, Hwang SJ, Moon GJ, Bang OY, KiM HH (2014) Cobalt chloride induces neuronal differentiation of human mesenchymal stem cells through upregulation of microRNA-124a. Biochem Biophys Res Commun 444:581–587

    Article  CAS  PubMed  Google Scholar 

  31. Liu XD, Cai F, Liu L, Zhang Y, Yang AL (2015) MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast differentiation. Biol Chem 396:339–347

    Article  CAS  PubMed  Google Scholar 

  32. Xu J, Huang Z, Lin L, Fu M, Gao Y, Shen Y, Zou Y, Sun A, Qian J, Ge J (2014) miR-210 over-expression enhances mesenchymal stem cell survival in an oxidative stress environment through antioxidation and c-Met pathway activation. Sci China Life Sci 57:989–997

    Article  CAS  PubMed  Google Scholar 

  33. Kim HW, Mallick F, Durrani S, Ashraf M, Jiang S, Haider KH (2012) Concomitant activation of miR-107/PDCD10 and hypoxamir-210/Casp8ap2 and their role in cytoprotection during ischemic preconditioning of stem cells. Antioxid Redox Signal 17:1053–1065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Katiyar SK, Mukhtar H (1997) Tea antioxidants in cancer chemoprevention. J Cell Biochem Suppl 27:59–67

    Article  CAS  PubMed  Google Scholar 

  35. Cao Y, Cao R (1999) Angiogenesis inhibited by drinking tea. Nature 398:381

    Article  CAS  PubMed  Google Scholar 

  36. Chen CH, Kang L, Lin RW, Fu YC, Lin YS, Chang JK, Chen HT, Chen CH, Lin SY, Wang GJ, Ho ML (2013) (-)-Epigallocatechin-3-gallate improves bone microarchitecture in ovariectomized rats. Menopause 20:687–694

    Article  PubMed  Google Scholar 

  37. Yagi H, Tan J, Tuan RS (2013) Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells. J Cell Biochem 114:1163–1173

    Article  CAS  PubMed  Google Scholar 

  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, Yin B, Wang B, Ma Z, Liu W, Lv G (2013) MicroRNA-210 promotes proliferation and invasion of peripheral nerve sheath tumor cells targeting EFNA3. Oncol Res 21:145–154

    Article  PubMed  Google Scholar 

  40. Bandow K, Maeda A, Kakimoto K, Kusuyama J, Shamoto M, Ohnishi T, Matsuguchi T (2010) Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differentiation. Biochem Biophys Res Commun 402:755–761

    Article  CAS  PubMed  Google Scholar 

  41. Kamon M, Zhao R, Sakamoto K (2010) Green tea polyphenol (-)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells. Cell Biol Int 34:109–116

    CAS  Google Scholar 

  42. Nakagawa H, Wachi M, Woo JT, Kato M, Kasai S, Takahashi F, Lee IS, Nagai K (2002) Fenton reaction is primarily involved in a mechanism of (-)-epigallocatechin-3-gallate to induce osteoclastic cell death. Biochem Biophys Res Commun 292:94–101

    Article  CAS  PubMed  Google Scholar 

  43. Wu CH, Yang YC, Yao WJ, Lu FH, Wu JS, Chang CJ (2002) Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch Intern Med 162:1001–1006

    Article  PubMed  Google Scholar 

  44. Vali B, Rao LG, El-Sohemy A (2007) Epigallocatechin-3-gallate increases the formation of mineralized bone nodules by human osteoblast-like cells. J Nutr Biochem 18:341–347

    Article  CAS  PubMed  Google Scholar 

  45. Rodriguez R, Kondo H, Nyan M, Hao J, Miyahara T, Ohya K, Kasugai S (2011) Implantation of green tea catechin alpha-tricalcium phosphate combination enhances bone repair in rat skull defects. J Biomed Mater Res B 98:263–271

    Article  Google Scholar 

  46. Chen CH, Ho ML, Chang JK, Hung SH, Wang GJ (2005) Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int 16:2039–2045

    Article  CAS  PubMed  Google Scholar 

  47. Jin P, Wu H, Xu G, Zheng L, Zhao J (2014) Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: an in vitro study. Cell Tissue Res 356:381–390

    Article  CAS  PubMed  Google Scholar 

  48. Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103:530–541

    Article  CAS  PubMed  Google Scholar 

  49. Ujigo S, Kamei N, Hadoush H, Fujioka Y, Miyaki S, Nakasa T, Tanaka N, Nakanishi K, Eguchi A, Sunagawa T, Ochi M (2014) Administration of microRNA-210 promotes spinal cord regeneration in mice. Spine 39:1099–1107

    Article  PubMed  Google Scholar 

  50. Wang Z, Yin B, Wang B, Ma Z, Liu W, Lv G (2013) MicroRNA-210 promotes proliferation and invasion of peripheral nerve sheath tumor cells targeting EFNA3. Oncol Res 21:145–154

    Article  PubMed  Google Scholar 

  51. Gomez-Maldonado L, Tiana M, Roche O, Prado-Cabrero A, Jensen L, Fernandez-Barral A, Guijarro-Munoz I, Favaro E, Moreno-Bueno G, Sanz L, Aragones J, Harris A, Volpert O, Jimenez B, Del PL (2015) EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene 34:2609–2620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Zhu R, Cho KS, Chen DF, Yang L (2014) Ephrin-A2 and -A3 are negative regulators of the regenerative potential of moller cells. Chin Med J (Engl 127:3438–3442

    Google Scholar 

  53. Pulkkinen K, Malm T, Turunen M, Koistinaho J, Yla-Herttuala S (2008) Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett 582:2397–2401

    Article  CAS  PubMed  Google Scholar 

  54. Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC, Martelli F (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-A3. J Biol Chem 283:15878–15883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Present study was supported by the Post-doctor Grant from the 2nd Shenzhen People’s Hospital (SZH2013006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjian Yang.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Chen, Y., Zeng, T. et al. EGCG ameliorates the hypoxia-induced apoptosis and osteogenic differentiation reduction of mesenchymal stem cells via upregulating miR-210. Mol Biol Rep 43, 183–193 (2016). https://doi.org/10.1007/s11033-015-3936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-015-3936-0

Keywords

Navigation