Skip to main content
Log in

Sciatic nerve regeneration by transplantation of menstrual blood-derived stem cells

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This is the first study demonstrating the efficacy of menstrual blood-derived stem cell (MenSC) transplantation via a neural guidance conduit, for peripheral nerve regeneration. The synthesized poly (ɛ-caprolactone)/Gelatin conduit, filled with collagen type I and seeded with 3 × 104 MenSCs, was implanted into a rat’s 10 mm sciatic nerve defect. The results of hot plate latency, sciatic functional index and weight-loss percentage of wet gastrocnemius muscle demonstrated that the MenSC transplantation had comparable nerve regeneration outcome to autograft, as the gold standard of nerve bridging. The transplantation of MenSCs via a synthetic conduit could ameliorate the functional recovery of sciatic nerve-injured rats which make them a potential candidate for cell therapy of peripheral nervous system disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Nectow AR, Marra KG, Kaplan DL (2012) Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng Part B 18:40–50

    Article  CAS  Google Scholar 

  2. di Summa PG, Kingham PJ, Campisi CC et al (2014) Collagen (NeuraGen®) nerve conduits and stem cells for peripheral nerve gap repair. Neurosci Lett 572:26–31

    Article  PubMed  Google Scholar 

  3. Mimeault M, Hauke R, Batra S (2007) Stem cells: a revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Therapeut 82:252–264

    Article  CAS  Google Scholar 

  4. Khoury M, Alcayaga-Miranda F, Illanes SE et al (2014) The promising potential of menstrual stem cells for antenatal diagnosis and cell therapy. Front Immunol 5:205

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rodrigues MCO, Dmitriev D, Rodrigues A Jr. et al (2012) Menstrual blood transplantation for ischemic stroke: therapeutic mechanisms and practical issues. Interv Med Appl Sci 4:59–68

    PubMed  PubMed Central  Google Scholar 

  6. Rodrigues MCO, Glover LE, Weinbren N et al. (2011) Toward personalized cell therapies: autologous menstrual blood cells for stroke. BioMed Res Int 2011

  7. Zhong Z, Patel AN, Ichim TE et al (2009) Feasibility investigation of allogeneic endometrial regenerative cells. J Transl Med 7:15

    Article  PubMed  PubMed Central  Google Scholar 

  8. Azedi F, Kazemnejad S, Zarnani AH et al (2014) Differentiation potential of menstrual blood-versus bone marrow-stem cells into glial-like cells. Cell Biol Int 38:615–624

    Article  CAS  PubMed  Google Scholar 

  9. Azedi F, Kazemnejad S, Zarnani AH et al. (2016) Comparative capability of menstrual blood versus bone marrow derived stem cells in neural differentiation. Mol Biol Rep 1–14

  10. Khanjani S, Khanmohammadi M, Zarnani AH et al. (2013) Efficient generation of functional hepatocyte-like cells from menstrual blood-derived stem cells. J Tissue Eng Regen Med 9(11):E124–134

    Google Scholar 

  11. Ceballos D, Navarro X, Dubey N et al (1999) Magnetically aligned collagen gel filling a collagen nerve guide improves peripheral nerve regeneration. Exp Neurol 158:290–300

    Article  CAS  PubMed  Google Scholar 

  12. Dijkstra JR, Meek MF, Robinson PH et al (2000) Methods to evaluate functional nerve recovery in adult rats: walking track analysis, video analysis and the withdrawal reflex. J Neurosci Methods 96:89–96

    Article  CAS  PubMed  Google Scholar 

  13. Naseri-Nosar M, Salehi M, Hojjati-Emami S (2017) Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications. Int J Biol Macromol 103:701–708

    Article  CAS  PubMed  Google Scholar 

  14. Evans PJ, Mackinnon SE, Best TJ et al (1995) Regeneration across preserved peripheral nerve grafts. Muscle Nerve 18:1128–1138

    Article  CAS  PubMed  Google Scholar 

  15. Khanmohammadi M, Khanjani S, Bakhtyari MS et al (2012) Proliferation and chondrogenic differentiation potential of menstrual blood-and bone marrow-derived stem cells in two-dimensional culture. Int J Hematol 95:484–493

    Article  PubMed  Google Scholar 

  16. Rahimi M, Zarnani A-H, Mohseni-Kouchesfehani H et al (2014) Comparative evaluation of cardiac markers in differentiated cells from menstrual blood and bone marrow-derived stem cells in vitro. Mol Biotechnol 56:1151–1162

    Article  CAS  PubMed  Google Scholar 

  17. Khanjani S, Khanmohammadi M, Zarnani A-H et al (2014) Comparative evaluation of differentiation potential of menstrual blood-versus bone marrow-derived stem cells into hepatocyte-like cells. PLoS ONE 9:e86075

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gu Y, Zhu J, Xue C et al (2014) Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 35:2253–2263

    Article  CAS  PubMed  Google Scholar 

  19. Borlongan CV, Kaneko Y, Maki M et al (2010) Menstrual blood cells display stem cell–like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev 19:439–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Terenghi G (1999) Peripheral nerve regeneration and neurotrophic factors. J Anat 194:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pluchino S, Quattrini A, Brambilla E et al (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694

    Article  CAS  PubMed  Google Scholar 

  22. Alcayaga-Miranda F, Cuenca J, Luz-Crawford P et al (2015) Characterization of menstrual stem cells: angiogenic effect, migration and hematopoietic stem cell support in comparison with bone marrow mesenchymal stem cells. Stem Cell Res Ther 6:32

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sirén A-L, Fratelli M, Brines M et al. (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci 98:4044–4049

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salehi M, Naseri-Nosar M, Ebrahimi-Barough S et al (2017) Sciatic nerve regeneration by transplantation of Schwann cells via erythropoietin controlled-releasing polylactic acid/multiwalled carbon nanotubes/gelatin nanofibrils neural guidance conduit. J Biomed Mater Res B. doi:10.1002/jbm.b.33952

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Hassan Zarnani or Majid Salehi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzamfar, S., Naseri-Nosar, M., Ghanavatinejad, A. et al. Sciatic nerve regeneration by transplantation of menstrual blood-derived stem cells. Mol Biol Rep 44, 407–412 (2017). https://doi.org/10.1007/s11033-017-4124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-017-4124-1

Keywords

Navigation