Skip to main content

Advertisement

Log in

Identification of the gene expression changes and gene regulatory aspects in ELF3 mutant bladder cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Recent genome-wide studies revealed the molecular subtypes and mutational landscape of bladder cancer, which is the 10th most common cancer causing many deaths. ELF3 is one of the frequently mutated genes in bladder cancer with 14% alteration rate. It mainly functions as an epithelial transcription factor and its proper function is critical for the urothelium development. However, the impact of ELF3 mutations in bladder cancer is currently unknown.

Methods and results

In this study, we analysed the gene expression data available for primary bladder cancer and bladder cancer cell lines according to the mutation status of ELF3. Our results show that de-regulated genes common in cell lines and primary tissue are primarily involved in ameboidal type cell migration and cell–cell junction organization. Additionally, we identify that ELF3-mutant cases in primary samples significantly overexpress PIK3C2B and ELF3 and PIK3C2B and ELF3 are significantly co-mutated in many cancer types. Our integrative analysis with existing Hi-C data further revealed the genes proximally located to ELF3, including PIK3C2B to be upregulated in ELF3 mutant cases, potentially as a result of truncated ELF3 protein product and subsequent changes in regulatory interactions.

Conclusions

Our results provide important insights about how ELF3 mutation contributes to bladder tumorigenesis and uncover previously unknown dependencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Kirkali Z, Chan T, Manoharan M, Algaba F, Busch C, Cheng L, Kiemeney L, Kriegmair M, Montironi R, Murphy WM, Sesterhenn IA, Tachibana M, Weider J (2005) Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology 66:4–34. https://doi.org/10.1016/j.urology.2005.07.062

    Article  PubMed  Google Scholar 

  3. Cancer Genome Atlas Research N (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315–322. https://doi.org/10.1038/nature12965

    Article  CAS  Google Scholar 

  4. Rentsch CA, Muller DC, Ruiz C, Bubendorf L (2017) Comprehensive molecular characterization of urothelial bladder carcinoma: a step closer to clinical translation? Eur Urol 72:960–961. https://doi.org/10.1016/j.eururo.2017.06.022

    Article  PubMed  Google Scholar 

  5. Kamoun A, de Reynies A, Allory Y, Sjodahl G, Robertson AG, Seiler R, Hoadley KA, Groeneveld CS, Al-Ahmadie H, Choi W, Castro MAA, Fontugne J, Eriksson P, Mo Q, Kardos J, Zlotta A, Hartmann A, Dinney CP, Bellmunt J, Powles T, Malats N, Chan KS, Kim WY, McConkey DJ, Black PC, Dyrskjot L, Hoglund M, Lerner SP, Real FX, Radvanyi F, Taxonomy BCM, G, (2020) A consensus molecular classification of muscle-invasive bladder cancer. Eur Urol 77:420–433. https://doi.org/10.1016/j.eururo.2019.09.006

    Article  PubMed  Google Scholar 

  6. Lindskrog SV, Prip F, Lamy P, Taber A, Groeneveld CS, Birkenkamp-Demtroder K, Jensen JB, Strandgaard T, Nordentoft I, Christensen E, Sokac M, Birkbak NJ, Maretty L, Hermann GG, Petersen AC, Weyerer V, Grimm MO, Horstmann M, Sjodahl G, Hoglund M, Steiniche T, Mogensen K, de Reynies A, Nawroth R, Jordan B, Lin X, Dragicevic D, Ward DG, Goel A, Hurst CD, Raman JD, Warrick JI, Segersten U, Sikic D, van Kessel KEM, Maurer T, Meeks JJ, DeGraff DJ, Bryan RT, Knowles MA, Simic T, Hartmann A, Zwarthoff EC, Malmstrom PU, Malats N, Real FX, Dyrskjot L (2021) An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer. Nat Commun 12:2301. https://doi.org/10.1038/s41467-021-22465-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hurst CD, Alder O, Platt FM, Droop A, Stead LF, Burns JE, Burghel GJ, Jain S, Klimczak LJ, Lindsay H, Roulson JA, Taylor CF, Thygesen H, Cameron AJ, Ridley AJ, Mott HR, Gordenin DA, Knowles MA (2017) Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell. https://doi.org/10.1016/j.ccell.2017.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  8. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley KA, Akbani R, Castro MAA, Gibb EA, Kanchi RS, Gordenin DA, Shukla SA, Sanchez-Vega F, Hansel DE, Czerniak BA, Reuter VE, Su X, de Sa CB, Chagas VS, Mungall KL, Sadeghi S, Pedamallu CS, Lu Y, Klimczak LJ, Zhang J, Choo C, Ojesina AI, Bullman S, Leraas KM, Lichtenberg TM, Wu CJ, Schultz N, Getz G, Meyerson M, Mills GB, McConkey DJ, Network TR, Weinstein JN, Kwiatkowski DJ, Lerner SP (2017) Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. https://doi.org/10.1016/j.cell.2017.09.007

    Article  PubMed  PubMed Central  Google Scholar 

  9. Luk IY, Reehorst CM, Mariadason JM (2018) ELF3, ELF5, EHF and SPDEF transcription factors in tissue homeostasis and cancer. Molecules. https://doi.org/10.3390/molecules23092191

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bock M, Hinley J, Schmitt C, Wahlicht T, Kramer S, Southgate J (2014) Identification of ELF3 as an early transcriptional regulator of human urothelium. Dev Biol 386:321–330. https://doi.org/10.1016/j.ydbio.2013.12.028

    Article  CAS  PubMed  Google Scholar 

  11. Gondkar K, Patel K, Krishnappa S, Patil A, Nair B, Sundaram GM, Zea TT, Kumar P (2019) E74 like ETS transcription factor 3 (ELF3) is a negative regulator of epithelial- mesenchymal transition in bladder carcinoma. Cancer Biomark 25:223–232. https://doi.org/10.3233/CBM-190013

    Article  CAS  PubMed  Google Scholar 

  12. Li D, Cheng P, Wang J, Qiu X, Zhang X, Xu L, Liu Y, Qin S (2019) IRF6 Is Directly Regulated by ZEB1 and ELF3, and predicts a favorable prognosis in gastric cancer. Front Oncol. https://doi.org/10.3389/fonc.2019.00220

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li S, Yuan Y, Xiao H, Dai J, Ye Y, Zhang Q, Zhang Z, Jiang Y, Luo J, Hu J, Chen C, Wang G (2019) Discovery and validation of DNA methylation markers for overall survival prognosis in patients with thymic epithelial tumors. Clin Epigenetics 11:38. https://doi.org/10.1186/s13148-019-0619-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yeung T-L, Leung CS, Wong K-K, Gutierrez-Hartmann A, Kwong J, Gershenson DM, Mok SC (2017) ELF3 is a negative regulator of epithelial-mesenchymal transition in ovarian cancer cells. Oncotarget 8:16951

    Article  PubMed  PubMed Central  Google Scholar 

  15. Suzuki M, Saito-Adachi M, Arai Y, Fujiwara Y, Takai E, Shibata S, Seki M, Rokutan H, Maeda D, Horie M, Suzuki Y, Shibata T, Kiyono T, Yachida S (2021) E74-like factor 3 is a key regulator of epithelial integrity and immune response genes in biliary tract cancer. Cancer Res 81:489–500. https://doi.org/10.1158/0008-5472.CAN-19-2988

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Yu Z, Huo S, Chen Z, Ou Z, Mai J, Ding S, Zhang J (2018) Overexpression of ELF3 facilitates cell growth and metastasis through PI3K/Akt and ERK signaling pathways in non-small cell lung cancer. Int J Biochem Cell Biol 94:98–106. https://doi.org/10.1016/j.biocel.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  17. Takaoka A, Ishikawa T, Okazaki S, Watanabe S, Miya F, Tsunoda T, Kikuchi A, Yamauchi S, Matsuyama T, Tokunaga M, Uetake H, Kinugasa Y (2021) ELF3 overexpression as prognostic biomarker for recurrence of stage II colorectal cancer. In Vivo 35:191–201. https://doi.org/10.21873/invivo.12248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kar A, Koto K, Walker D, Trudeau T, Edgerton S, Thor A, Gutierrez-Hartmann A (2020) ETS transcription factor ESE-1/Elf3 is an independent prognostic factor of survival in HR(+)HER2(+) breast cancer patients. Breast Cancer Res Treat 182:601–612. https://doi.org/10.1007/s10549-020-05734-y

    Article  CAS  PubMed  Google Scholar 

  19. Eriksson P, Aine M, Veerla S, Liedberg F, Sjodahl G, Hoglund M (2015) Molecular subtypes of urothelial carcinoma are defined by specific gene regulatory systems. BMC Med Genomics 8:25. https://doi.org/10.1186/s12920-015-0101-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120. https://doi.org/10.1038/ng.2764

    Article  CAS  Google Scholar 

  21. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, Shen R, Taylor AM, Cherniack AD, Thorsson V, Akbani R, Bowlby R, Wong CK, Wiznerowicz M, Sanchez-Vega F, Robertson AG, Schneider BG, Lawrence MS, Noushmehr H, Malta TM, Cancer Genome Atlas N, Stuart JM, Benz CC, Laird PW (2018) Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. https://doi.org/10.1016/j.cell.2018.03.022

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607. https://doi.org/10.1038/nature11003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  24. Liu T, Ortiz JA, Taing L, Meyer CA, Lee B, Zhang Y, Shin H, Wong SS, Ma J, Lei Y, Pape UJ, Poidinger M, Chen Y, Yeung K, Brown M, Turpaz Y, Liu XS (2011) Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol 12:R83. https://doi.org/10.1186/gb-2011-12-8-r83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  26. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carlson M (2019) org.Hs.eg.db: Genome wide annotation for Human. R package version 3.8.2. https://doi.org/10.18129/B9.bioc.org.Hs.eg.db

  28. Iyyanki T, Zhang B, Wang Q, Hou Y, Jin Q, Xu J, Yang H, Liu T, Wang X, Song F, Luan Y, Yamashita H, Chien R, Lyu H, Zhang L, Wang L, Warrick J, Raman JD, Meeks JJ, DeGraff DJ, Yue F (2021) Subtype-associated epigenomic landscape and 3D genome structure in bladder cancer. Genome Biol 22:105. https://doi.org/10.1186/s13059-021-02325-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1003118

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yu G, Wang LG, He QY (2015) ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31:2382–2383. https://doi.org/10.1093/bioinformatics/btv145

    Article  CAS  PubMed  Google Scholar 

  31. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J, Barnes I, Berry A, Bignell A, Carbonell Sala S, Chrast J, Cunningham F, Di Domenico T, Donaldson S, Fiddes IT, Garcia Giron C, Gonzalez JM, Grego T, Hardy M, Hourlier T, Hunt T, Izuogu OG, Lagarde J, Martin FJ, Martinez L, Mohanan S, Muir P, Navarro FCP, Parker A, Pei B, Pozo F, Ruffier M, Schmitt BM, Stapleton E, Suner MM, Sycheva I, Uszczynska-Ratajczak B, Xu J, Yates A, Zerbino D, Zhang Y, Aken B, Choudhary JS, Gerstein M, Guigo R, Hubbard TJP, Kellis M, Paten B, Reymond A, Tress ML, Flicek P (2019) GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47:D766–D773. https://doi.org/10.1093/nar/gky955

    Article  CAS  PubMed  Google Scholar 

  32. Diaferia GR, Balestrieri C, Prosperini E, Nicoli P, Spaggiari P, Zerbi A, Natoli G (2016) Dissection of transcriptional and cis-regulatory control of differentiation in human pancreatic cancer. EMBO J 35:595–617. https://doi.org/10.15252/embj.201592404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Song F, Zhang B, Zhang L, Xu J, Kuang D, Li D, Choudhary MNK, Li Y, Hu M, Hardison R, Wang T, Yue F (2018) The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol 19:151. https://doi.org/10.1186/s13059-018-1519-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496. https://doi.org/10.1093/nar/gkx922

    Article  CAS  PubMed  Google Scholar 

  35. Letunic I, Khedkar S, Bork P (2021) SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 49:D458–D460. https://doi.org/10.1093/nar/gkaa937

    Article  CAS  PubMed  Google Scholar 

  36. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14:128. https://doi.org/10.1186/1471-2105-14-128

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97. https://doi.org/10.1093/nar/gkw377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM, Jeon M, Ma’ayan A (2021) Gene set knowledge discovery with enrichr. Curr Protoc. https://doi.org/10.1002/cpz1.90

    Article  PubMed  PubMed Central  Google Scholar 

  39. Clarke DJB, Jeon M, Stein DJ, Moiseyev N, Kropiwnicki E, Dai C, Xie Z, Wojciechowicz ML, Litz S, Hom J, Evangelista JE, Goldman L, Zhang S, Yoon C, Ahamed T, Bhuiyan S, Cheng M, Karam J, Jagodnik KM, Shu I, Lachmann A, Ayling S, Jenkins SL, Ma’ayan A (2021) Appyters: Turning Jupyter Notebooks into data-driven web apps. Patterns (N Y). https://doi.org/10.1016/j.patter.2021.100213

    Article  Google Scholar 

  40. Brembeck FH, Opitz OG, Libermann TA, Rustgi AK (2000) Dual function of the epithelial specific ets transcription factor, ELF3, in modulating differentiation. Oncogene 19:1941–1949. https://doi.org/10.1038/sj.onc.1203441

    Article  CAS  PubMed  Google Scholar 

  41. Boti MA, Adamopoulos PG, Tsiakanikas P, Scorilas A (2021) Nanopore sequencing unveils diverse transcript variants of the epithelial cell-specific transcription factor Elf-3 in human malignancies. Genes (Basel). https://doi.org/10.3390/genes12060839

    Article  Google Scholar 

  42. Choi YS, Sinha S (2006) Determination of the consensus DNA-binding sequence and a transcriptional activation domain for ESE-2. Biochem J 398:497–507. https://doi.org/10.1042/BJ20060375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schultz J, Bork P, Ponting CP, Hofmann K (1997) SAM as a protein interaction domain involved in developmental regulation. Protein Sci 6:249–253. https://doi.org/10.1002/pro.5560060128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meruelo AD, Bowie JU (2009) Identifying polymer-forming SAM domains. Proteins 74:1–5. https://doi.org/10.1002/prot.22232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kopp JL, Wilder PJ, Desler M, Kinarsky L, Rizzino A (2007) Different domains of the transcription factor ELF3 are required in a promoter-specific manner and multiple domains control its binding to DNA. J Biol Chem 282:3027–3041. https://doi.org/10.1074/jbc.M609907200

    Article  CAS  PubMed  Google Scholar 

  46. Margaria JP, Ratto E, Gozzelino L, Li H, Hirsch E (2019) Class II PI3Ks at the intersection between signal transduction and membrane trafficking. Biomolecules. https://doi.org/10.3390/biom9030104

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang C, Yang Y, Yin L, Wei N, Hong T, Sun Z, Yao J, Li Z, Liu T (2020) Novel potential biomarkers associated with epithelial to mesenchymal transition and bladder cancer prognosis identified by integrated bioinformatic analysis. Front Oncol 10:931. https://doi.org/10.3389/fonc.2020.00931

    Article  PubMed  PubMed Central  Google Scholar 

  48. DeGraff DJ, Cates JM, Mauney JR, Clark PE, Matusik RJ, Adam RM (2013) When urothelial differentiation pathways go wrong: implications for bladder cancer development and progression. Urol Oncol 31:802–811. https://doi.org/10.1016/j.urolonc.2011.07.017

    Article  CAS  PubMed  Google Scholar 

  49. Catozzi S, Halasz M, Kiel C (2021) Predicted ‘wiring landscape’ of Ras-effector interactions in 29 human tissues. NPJ Syst Biol Appl 7:10. https://doi.org/10.1038/s41540-021-00170-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jonsen MD, Petersen JM, Xu QP, Graves BJ (1996) Characterization of the cooperative function of inhibitory sequences in Ets-1. Mol Cell Biol 16:2065–2073. https://doi.org/10.1128/MCB.16.5.2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koutros S, Schumacher FR, Hayes RB, Ma J, Huang WY, Albanes D, Canzian F, Chanock SJ, Crawford ED, Diver WR, Feigelson HS, Giovanucci E, Haiman CA, Henderson BE, Hunter DJ, Kaaks R, Kolonel LN, Kraft P, Le Marchand L, Riboli E, Siddiq A, Stampfer MJ, Stram DO, Thomas G, Travis RC, Thun MJ, Yeager M, Berndt SI (2010) Pooled analysis of phosphatidylinositol 3-kinase pathway variants and risk of prostate cancer. Cancer Res 70:2389–2396. https://doi.org/10.1158/0008-5472.CAN-09-3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boller D, Doepfner KT, De Laurentiis A, Guerreiro AS, Marinov M, Shalaby T, Depledge P, Robson A, Saghir N, Hayakawa M, Kaizawa H, Koizumi T, Ohishi T, Fattet S, Delattre O, Schweri-Olac A, Holand K, Grotzer MA, Frei K, Spertini O, Waterfield MD, Arcaro A (2012) Targeting PI3KC2beta impairs proliferation and survival in acute leukemia, brain tumours and neuroendocrine tumours. Anticancer Res 32:3015–3027

    CAS  PubMed  Google Scholar 

  53. Pandey A, Stawiski EW, Durinck S, Gowda H, Goldstein LD, Barbhuiya MA, Schroder MS, Sreenivasamurthy SK, Kim SW, Phalke S, Suryamohan K, Lee K, Chakraborty P, Kode V, Shi X, Chatterjee A, Datta K, Khan AA, Subbannayya T, Wang J, Chaudhuri S, Gupta S, Shrivastav BR, Jaiswal BS, Poojary SS, Bhunia S, Garcia P, Bizama C, Rosa L, Kwon W, Kim H, Han Y, Yadav TD, Ramprasad VL, Chaudhuri A, Modrusan Z, Roa JC, Tiwari PK, Jang JY, Seshagiri S (2020) Integrated genomic analysis reveals mutated ELF3 as a potential gallbladder cancer vaccine candidate. Nat Commun 11:4225. https://doi.org/10.1038/s41467-020-17880-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is funded by EMBO Installation Grant No. 4148.

Author information

Authors and Affiliations

Authors

Contributions

PYGS and SEO designed the study. PYGS analysed the data and performed the experiments. PYGS and SEO wrote the manuscript.

Corresponding author

Correspondence to Serap Erkek-Ozhan.

Ethics declarations

Conflict of interest

Authors declare no conflicts or competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 706 kb)

Supplementary file2 (PDF 576 kb)

Supplementary file3 (PDF 206 kb)

11033_2022_7145_MOESM4_ESM.xlsx

Supplementary file4—Supplementary Table 1. Clinical Data of TCGA PanCancer Atlas for Bladder Urothelial Carcinoma. (XLSX 152 kb)

11033_2022_7145_MOESM5_ESM.xlsx

Supplementary file5—Supplementary Table 2. List of downregulated (A) and upregulated (B) genes in ELF3 mutant primary bladder cancer. List of downregulated (C) and upregulated (D) genes in ELF3 mutant bladder cancer cell lines. (XLSX 111 kb)

11033_2022_7145_MOESM6_ESM.xlsx

Supplementary file6—Supplementary Table 3. Genes associated with RT4-specific H3K27ac peaks and their linked GO Terms. (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guneri-Sozeri, P.Y., Erkek-Ozhan, S. Identification of the gene expression changes and gene regulatory aspects in ELF3 mutant bladder cancer. Mol Biol Rep 49, 3135–3147 (2022). https://doi.org/10.1007/s11033-022-07145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07145-2

Keywords

Navigation