Skip to main content
Log in

The Canopy Graph and Level Statistics for Random Operators on Trees

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

For operators with homogeneous disorder, it is generally expected that there is a relation between the spectral characteristics of a random operator in the infinite setup and the distribution of the energy gaps in its finite volume versions, in corresponding energy ranges. Whereas pure point spectrum of the infinite operator goes along with Poisson level statistics, it is expected that purely absolutely continuous spectrum would be associated with gap distributions resembling the corresponding random matrix ensemble. We prove that on regular rooted trees, which exhibit both spectral types, the eigenstate point process has always Poissonian limit. However, we also find that this does not contradict the picture described above if that is carefully interpreted, as the relevant limit of finite trees is not the infinite homogenous tree graph but rather a single-ended ‘canopy graph.’ For this tree graph, the random Schrödinger operator is proven here to have only pure-point spectrum at any strength of the disorder. For more general single-ended trees it is shown that the spectrum is always singular – pure point possibly with singular continuous component which is proven to occur in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acosta, V., Klein, A.: Analyticity of the density of states in the Anderson model on the Bethe lattice. J. Statist. Phys. 69, 277–305 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adachi, T., Sunada, T.: Density of states in spectral geometry. Comment. Math. Helv. 68, 480–493 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Comm. Math. Phys. 157, 245–278 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Aizenman, M.: Localization at weak disorder: some elementary bounds. Rev. Math. Phys. 6, 1163–1182 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aizenman, M., Sims, R., Warzel, S.: Stability of the absolutely continuous spectrum of random Schrödinger operators on tree graphs. Probab. Theory Related Fields 136, 363–394 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aizenman, M., Sims, R., Warzel, S.: Absolutely continuous spectra of quantum tree graphs with weak disorder. Comm. Math. Phys. 264, 371–389 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Allard, C., Froese, R.: A Mourre estimate for a Schrödinger operator on a binary tree. Rev. Math. Phys. 12, 1655–1667 (2000)

    MATH  MathSciNet  Google Scholar 

  8. Altshuler, B., Shklovski, B.I.: Repulsion of energy levels and conductivity of metal samples. Sov. Phys. JETP 64, 127–135 (1986)

    Google Scholar 

  9. Bauer, M., Golinelli, O.: Random incidence matrices: moments of the spectral density. J. Statist. Phys. 103, 301–337 (2000)

    Article  MathSciNet  Google Scholar 

  10. Bollobás, B.: Random Graphs. Academic, London (1985)

    MATH  Google Scholar 

  11. Boole, G.: On the comparison of transcendentals, with certain application to the theory of definite integrals. Philos. Trans. Roy. Soc. London Ser. A 147, 780 (1857)

    Google Scholar 

  12. Breuer, J.: Singular continuous and dense point spectrum for sparse trees with finite dimensions. Available at math.SP/0608159 (2006)

  13. Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Comm. Math. Phys. 108, 41–66 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Birkhäuser, Boston, MA (1990)

    MATH  Google Scholar 

  15. del Rio, R., Simon, B., Stolz, G.: Stability of spectral types for Sturm-Liouville operators. Math. Res. Lett. 1, 437–450 (1994)

    MATH  MathSciNet  Google Scholar 

  16. Delyon, F.: Appearance of purely singular continuous spectrum in a class of random Schrödinger operators. J. Statist. Phys. 40, 621–630 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Delyon, F., Kunz, H., Souillard, B.: One-dimensional wave equations in disordered media. J. Phys. A, Math. Gen. 16, 25–42 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dicks, W., Schick, T.: The spectral measure of certain elements of the complex group ring of a wreath product. Geom. Dedicata 93, 121–134 (2001)

    Article  MathSciNet  Google Scholar 

  19. Disertori, M., Rivasseau, V.: Random matrices and the Anderson model. Avalable at math-ph/0310021 (2003)

  20. Evangelou, S.N., Economou, E.N.: Spectral density singularities, level statistics, and localization in a sparse random matrix ensemble. Phys. Rev. Lett. 68, 361–364 (1992)

    Article  ADS  Google Scholar 

  21. Evangelou, S.N.: A numerical study of sparse random matrices. J. Statist. Phys. 69, 361–364 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Efetov, K.B.: Supersymmetry in Disorder and Chaos. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  23. Froese, R., Hasler, D., Spitzer, W.: Absolutely continuous spectrum for the Anderson model on a tree: a geometric proof of Klein’s theorem. Comm. Math. Phys. 269, 239–257 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. Graf, G.M., Vaghi, A.: A remark on an estimate by Minami. Available at math-ph/0604033 (2006).

  25. Grigorchuk, R.I., Zuk, A.: The lamplighter group as a group generated by a 2-state automaton and its spectrum. Geom. Dedicata 87, 209–244 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jacobson, D., Miller, S.D., Rivin, I., Rudnick, Z.: Eigenvalue spacing for regular graphs. In: Hejhal D.A. et al. (eds.), Emerging Applications in Number Theory. Spinger, Berlin (1999)

    Google Scholar 

  27. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (2002)

    MATH  Google Scholar 

  28. Klein, A.: The Anderson metal-insulator transition on the Bethe lattice. In: Iagolnitzer, D. (ed.), Proceedings of the XIth International Congress on Mathematical Physics, Paris, France, July 18-23, 1994. International Press, Cambridge, MA (1995)

    Google Scholar 

  29. Klein, A.: Extended states in the Anderson model on the Bethe lattice. Adv. Math. 133, 163–184 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kunz, H., Souillard, B.: Sur le spectre des operateurs aux difference finies aleatoire. Comm. Math. Phys. 78, 201–246 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Kottos, T., Smilansky, U.: Periodic orbit theory and spectral statistics for quantum graphs. Ann. Physics 274, 76–124 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Miller, J.D., Derrida, B.: Weak disorder expansion for the Anderson model on a tree. J. Statist. Phys. 75, 357–388 (1993)

    Article  MathSciNet  Google Scholar 

  33. Minami, N.: Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Comm. Math. Phys. 177, 709–725 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Mirlin, A.D., Fyodorov, Y.V.: Universality of the level correlation function of sparse random matrices. J. Phys. A, Math. Gen. 24, 2273–2286 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Molchanov, S.A.: The local structure of the spectrum of the one-dimensional Schrödinger operator. Comm. Math. Phys. 78, 429–446 (1981)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Pastur, L., Figotin, A.: Spectra of Random and Almost-periodic Operators. Springer, Berlin (1992)

    MATH  Google Scholar 

  37. Simon, B.: Operators with singular continuous spectrum, IV: Graph Laplacians and Laplace-Beltrami operators. Proc. Amer. Math. Soc. 124, 1177–1182 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Simon, B., Wolff, T.: Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Comm. Pure Appl. Math. 39, 75–90 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  39. Shklovskii, B.I., Shapiro, B., Sears, B.R., Lambrianides, P., Shore, H.B.: Statistics of spectra of disordered systems near the metal-insulator transition. Phys. Rev. B 47, 11487–11490 (1993)

    Article  ADS  Google Scholar 

  40. Stollmann, P.: Caught by Disorder: Bound States in Random Media. Birkhäuser, Boston, MA (2001)

    MATH  Google Scholar 

  41. Sznitman, A.-S.: Lifshitz tail and Wiener sausage on hyperbolic space. Comm. Pure Appl. Math. 17, 1033–1065 (1989)

    Article  MathSciNet  Google Scholar 

  42. Sznitman, A.-S.: Lifshitz tail on hyperbolic space: Neumann conditions. Comm. Pure Appl. Math. 18, 1–30 (1990)

    Article  MathSciNet  Google Scholar 

  43. Wegner, F.: Bounds on the density of states in disordered systems. Z. Phys. B 44, 9–15 (1981)

    Article  MathSciNet  Google Scholar 

  44. Woess, W.: Random walks on infinite graphs and groups. In: Cambridge Tracts in Mathematics, vol. 138. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Warzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aizenman, M., Warzel, S. The Canopy Graph and Level Statistics for Random Operators on Trees. Math Phys Anal Geom 9, 291–333 (2006). https://doi.org/10.1007/s11040-007-9018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11040-007-9018-3

Keywords

Mathematics Subject Classifications (2000)

Navigation