Skip to main content
Log in

Compressed sensing based remote sensing image reconstruction via employing similarities of reference images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In the traditional reconstruction algorithm for compressed sensing, we use the measurement matrix and the corresponding observed image to recover the target image. In the application of remote sensing, there are many multi-source and multi-temporal reference images that have similar information to that of the target image. In this paper, we propose an algorithm to reconstruct the target image with information from multi-source and multi-temporal reference images to improve the image reconstruction accuracy, in other words, to improve the degree of similarity between the reconstructed image and the target image. The basic principle of our method is to construct a penalty term with the similarity of the target sparse coefficient and the reference sparse coefficient to constrain the reconstruction process. The experimental results demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abramovich F, Sapatinas T, Silverman BW (1998) Wavelet thresholding via a bayesian approach. J R Stat Soc Ser B (Stat Methodol) 60:725–749

    Article  MathSciNet  MATH  Google Scholar 

  2. Basseville M, Benveniste A, Chou KC, Golden SA, Nikoukhah R, Willsky AS (1992) Modeling and estimation of multiresolution stochastic processes. IEEE Trans Inf Theory 38:766–784

    Article  Google Scholar 

  3. Blumensath T, Davies ME (2009) Iterative hard thresholding for compressed sensing. Appl Comput Harmon Anal 27:265–274

    Article  MathSciNet  MATH  Google Scholar 

  4. Busch A, Boles WW, Sridharan S (2005) Texture for script identification. IEEE Trans Pattern Anal Mach Intell 27:1720–1732

    Article  Google Scholar 

  5. Chen SS, Donoho DL, Saunders MA (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20:33–61

    Article  MathSciNet  MATH  Google Scholar 

  6. Chipman HA, Kolaczyk ED, McCulloch RE (1997) Adaptive bayesian wavelet shrinkage. J Am Stat Assoc 92:1413–1421

    Article  MATH  Google Scholar 

  7. Chou KC, Larry PH (1994) A multiscale stochastic modeling approach to the monitoring of mechanical systems. In: Proceedings of the IEEE-SP international symposium on Time-Frequency and Time-Scale Analysis, 1994, pp 25–27

  8. Claude ES (1949) Communication in the presence of noise. Proc IRE 37(1):10–21

    MathSciNet  Google Scholar 

  9. David L (2006) Donoho. Compressed sensing. IEEE Trans Inf Theory 52:1289–1306

    Article  MATH  Google Scholar 

  10. John GD (1980) Two-dimensional spectral analysis of cortical receptive field profiles. Vis Res 20: 847–856

    Article  Google Scholar 

  11. Figueiredo MAT, Nowak RD, Stephen JW (2007) Gradient projection for sparse reconstruction; Application to compressed sensing and other inverse problems. IEEE J SelTop Sign Proces 1: 586–597

    Article  Google Scholar 

  12. Goldstein T, Osher S (2009) The split bregman method for l1-regularized problems. SIAM J Imag Sci 2:323–343

    Article  MathSciNet  MATH  Google Scholar 

  13. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106

    Article  Google Scholar 

  14. Kim SC, Kang TJ (2007) Texture classification and segmentation using wavelet packet frame and gaussian mixture model. Pattern Recogn 40:1207–1221

    Article  MATH  Google Scholar 

  15. Kokare M, Biswas PK, Chatterji BN (2007) Texture image retrieval using rotated wavelet filters. Pattern Recogn Lett 28:1240–1249

    Article  Google Scholar 

  16. Kokare M, Chatterji BN, Biswas PK (2002) M-band wavelet based texture features for content based image retrieval. In: ICVGIP

  17. Kokare M, Chatterji BN, Biswas PK (2002) A survey on current content based image retrieval methods. IETE J Res 48:261–271

    Article  Google Scholar 

  18. Kokare M, Chatterji BN, Biswas PK (2003) Comparison of similarity metrics for texture image retrieval. In: TENCON 2003. Conference on Convergent Technologies for the Asia-Pacific Region, vol 2 , pp 571–575

  19. Lee N, Huynh Q, Schwartz S (1996) New method of linear time-frequency analysis for signal detection. In: Proceedings of the IEEE-SP international symposium on Time-Frequency and Time-Scale Analysis, 1996, pp 13–16

  20. Luettgen MR, Karl WC, Willsky AS, Tenney RR (1993) Multiscale representations of markov random fields. IEEE Trans Signal Process 41:3377–3396

    Article  MATH  Google Scholar 

  21. Majumdar A, Ward RK. (2010) Compressed sensing of color images. Signal Process 90(12):3122–3127

    Article  MATH  Google Scholar 

  22. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 41:3397–3415

    Article  MATH  Google Scholar 

  23. Mojsilovic A, Popovic MV, Rackov DM (2000) On the selection of an optimal wavelet basis for texture characterization. IEEE Trans Image Process 9(12):2043–2050

    Article  MathSciNet  MATH  Google Scholar 

  24. Muneeswaran K, Ganesan L, Arumugam S, Ruba Soundar K (2005) Texture classification with combined rotation and scale invariant wavelet features. Pattern Recogn 38:1495–1506

    Article  MATH  Google Scholar 

  25. Nagesh P, Li B (2009) Compressed imaging of color images, pp 1261C1264

  26. Needell D, Tropp JA (2009) Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 26:301–321

    Article  MathSciNet  MATH  Google Scholar 

  27. Pesquet JC, Krim H, Leporini D, Hamman E (1996) Bayesian approach to best basis selection. In: 1996 IEEE international conference on acoustics, speech, and signal processing, 1996. ICASSP-96. Conference Proceedings, vol 5, pp 2634–2637

  28. Ravindran A (2006) Gintaras Victor Reklaitis, and Kenneth Martin Ragsdell. Engineering optimization: methods and applications. Wiley

  29. Rubinstein R, Bruckstein AM, Elad M (2010) Dictionaries for sparse representation modeling. Proc IEEE 98:1045–1057

    Article  Google Scholar 

  30. Simoncelli EP, Adelson EH (1996) Noise removal via bayesian wavelet coring. In: International Conference on Image Processing, 1996. Proceedings, vol 1, pp 379–382

  31. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53:4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang Z, Bhaskar D (2013) Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Trans Signal Process 61(8):2009–2015

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 41471368 and No. 41571413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhe Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Wang, L., Liu, P. et al. Compressed sensing based remote sensing image reconstruction via employing similarities of reference images. Multimed Tools Appl 75, 12201–12225 (2016). https://doi.org/10.1007/s11042-015-3004-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-3004-8

Keywords

Navigation