Skip to main content
Log in

Image retrieval based on exponent moments descriptor and localized angular phase histogram

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Multiple feature extraction and combination is one of the most important issues in the content-based image retrieval (CBIR). In this paper, we propose a new content-based image retrieval method based on an efficient combination of shape and texture features. As its shape features, exponent moments descriptor (EMD), which has many desirable properties such as expression efficiency, robustness to noise, geometric invariance, fast computation etc., is adopted in RGB color space. As its texture features, localized angular phase histogram (LAPH) of the intensity component, which is robust to illumination, scaling, and image blurring, is used in hue saturation intensity (HSI) color space. The combination of above shape and texture information provides a robust feature set for color image retrieval. Experimental results on well known databases show significant improvements in retrieval rates using the proposed method compared with some current state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Amanatiadis A, Kaburlasos VG, Gasteratos A, Papadakis SE (2011) Evaluation of shape descriptors for shape-based image retrieval. IET Image Process 5(5):493–499

    Article  Google Scholar 

  2. Anuar FM, Setchi R, Lai Y (2013) Trademark image retrieval using an integrated shape descriptor. Expert Syst Appl 40(1):105–121

    Article  Google Scholar 

  3. Aptoula E (2014) Remote sensing image retrieval with global morphological texture descriptors. IEEE Trans Geoscience Remote Sensing 52(5):3023–3034

    Article  Google Scholar 

  4. Aptoula E, Lefèvre S (2009) Morphological description of color images for content-based image retrieval. IEEE Trans Image Process 18(11):2505–2517

    Article  MathSciNet  Google Scholar 

  5. Atto AM, Berthoumieu Y, Bolon P (2013) 2-D wavelet packet spectrum for texture analysis. IEEE Trans Image Process 22(6):2495–2500

    Article  MathSciNet  Google Scholar 

  6. Chen WT, Liu WC, Chen MS (2010) Adaptive color feature extraction based on image color distributions. IEEE Trans Image Process 19(8):2005–2016

    Article  MathSciNet  Google Scholar 

  7. Chun YD, Kim NC, Jang IH (2008) Content-based image retrieval using multiresolution color and texture features. IEEE Trans Multimedia 10(6):1073–1084

    Article  Google Scholar 

  8. Datta R, Joshi D, Li J (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2):1–60

    Article  Google Scholar 

  9. Farsi H, Mohamadzadeh S (2013) Colour and texture feature-based image retrieval by using hadamard matrix in discrete wavelet transform. IET Image Process 7(3):212–218

    Article  MathSciNet  Google Scholar 

  10. Gholamreza A, Ali E, George B, Mircea N (2005) Accurate and efficient computation of high order Zernike moments. First Int Symp Visual Comput, Lecture Notes Comput Sci 3804:462–469. doi:10.1007/11595755_56

    Article  Google Scholar 

  11. He Z, You X, Yuan Y (2009) Texture image retrieval based on non-tensor product wavelet filter banks. Signal Process 89(8):1501–1510

    Article  MATH  Google Scholar 

  12. Hong C, Yu J, Tao D (2015) Image-based 3d human pose recovery by multi-view locality sensitive sparse retrieval. EEE Trans Industrial Electronics 62(6):3742–3751

    Google Scholar 

  13. Hu W, Xie N, Li L, Zeng X (2011) A survey on visual content-based video indexing and retrieval. IEEE Trans Syst, Man Cybernetics, Part C: Appl Rev 41(6):797–819

    Article  Google Scholar 

  14. Jacob IJ, Srinivasagan KG, Jayapriya K (2014) Local oppugnant color texture pattern for image retrieval system. Pattern Recogn Lett 42:72–78

    Article  Google Scholar 

  15. Jian M, Lam KM (2014) Face-image retrieval based on singular values and potential-field representation. Signal Process 100:9–15

    Article  Google Scholar 

  16. Jun Y, Dongquan L, Dacheng T, Hock Soon S (2012) On combining multiple features for cartoon character retrieval and clip synthesis. IEEE Trans Syst, Man Cybernetics, Part B: Cybernetics 42(5):1413–1427

    Article  Google Scholar 

  17. Kashif I, Michael OO, Anne J (2012) Content-based image retrieval approach for biometric security using colour, texture and shape features controlled by fuzzy heuristics. J Comput Syst Sci 78(4):1258–1277

    Article  MathSciNet  Google Scholar 

  18. Kokare M, Biswas PK, Chatterji BN (2006) Texture image retrieval using new rotated complex wavelet filters. IEEE Trans Syst Man Cybernetics Part B 35(6):1168–78

    Article  Google Scholar 

  19. Lasmar NE, Berthoumieu Y (2014) Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms. IEEE Trans Image Process 23(5):2246–2261

    Article  MathSciNet  Google Scholar 

  20. Li X (2003) Image retrieval based on perceptive weighted color blocks. Pattern Recogn Lett 24(12):1935–1941

    Article  Google Scholar 

  21. Li S, Lee MC, Pun CM (2009) Complex Zernike moments features for shape-based image retrieval. IEEE Trans Systems, Man Cybernetics, Part A: Systems Humans 39(1):227–237

    Article  Google Scholar 

  22. Li C, Li J, Fu B (2013) Magnitude-phase of quaternion wavelet transform for texture representation using multilevel copula. IEEE Signal Proc Letters 20(8):799–802

    Article  Google Scholar 

  23. Liapis S, Tziritas G (2004) Color and texture image retrieval using chromaticity histograms and wavelet frames. IEEE Trans Multimedia 6(5):676–686

    Article  Google Scholar 

  24. Lin CH, Chen RT, Chan YK (2009) A smart content-based image retrieval system based on color and texture feature. Image Vis Comput 27(6):658–665

    Article  Google Scholar 

  25. Liu M, Vemuri BC, Amari SI, Nielsen F (2012) Shape retrieval using hierarchical total Bregman soft clustering. IEEE Trans Pattern Analysis Machine Intell 34(12):2407–2419

    Article  Google Scholar 

  26. Liu GH, Yang JY (2013) Content-based image retrieval using color difference histogram. Pattern Recogn 46(1):188–198

    Article  Google Scholar 

  27. Meng M, Ping ZL (2011) Decompose and reconstruct images based on exponential Fourier moments. J Inner Mongolia Normal Univ (Natural Sci Ed) 40(3):258–260

    Google Scholar 

  28. Pappas TN, Neuhoff DL, de Ridder H, Zujovic J (2013) Image analysis: focus on texture similarity. Proc IEEE 101(9):2044–2057

    Article  Google Scholar 

  29. Park U, Park J, Jain AK (2014) Robust keypoint detection using higher-order scale space derivatives: application to image retrieval. IEEE Signal Proc Letters 21(8):962–965

    Article  Google Scholar 

  30. Pooja CS (2011) Improving image retrieval using combined features of Hough transform and Zernike moments. Opt Lasers Eng 49(12):1384–1396

    Article  Google Scholar 

  31. Prasad BG, Biswas KK, Gupta SK (2004) Region-based image retrieval using integrated color, shape, and location index. Comput Vis Image Underst 94(1–3):193–233

    Article  Google Scholar 

  32. Rakvongthai Y, Oraintara S (2013) Statistical texture retrieval in noise using complex wavelets. Signal Process Image Commun 28(10):1494–1505

    Article  Google Scholar 

  33. Saipullah KM, Kim DH (2012) A robust texture feature extraction using the localized angular phase. Multimedia Tools Appl 59(3):717–747

    Article  Google Scholar 

  34. Seetharaman K, Jeyakarthic M (2014) Statistical distributional approach for scale and rotation invariant color image retrieval using multivariate parametric tests and orthogonality condition. J Vis Commun Image Represent 25(5):727–739

    Article  Google Scholar 

  35. Sherin MY (2012) ICTEDCT-CBIR: Integrating curvelet transform with enhanced dominant colors extraction and texture analysis for efficient content-based image retrieval. Comput Electrical Eng 38(5):1358–1376

    Article  Google Scholar 

  36. Shu X, Xiao-Jun W (2011) A novel contour descriptor for 2D shape matching and its application to image retrieval. Image Vis Comput 29(4):286–294

    Article  Google Scholar 

  37. Singha M, Hemachandran K, Paul A (2012) Content-based image retrieval using the combination of the fast wavelet transformation and the colour histogram. IET Image Process 6(9):1221–1229

    Article  MathSciNet  Google Scholar 

  38. Susana A, Annaa S, Maria V, Xavier O (2012) Low-dimensional and comprehensive color texture description. Comput Vis Image Underst 116(1):54–67

    Article  Google Scholar 

  39. Talib A, Mahmuddin M, Husni H (2013) A weighted dominant color descriptor for content-based image retrieval. J Vis Commun Image Represent 24(3):345–360

    Article  Google Scholar 

  40. Van De Sande KEA, Gevers T, Snoek CGM (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Analysis Machine Intell 32(9):1582–1596

    Article  Google Scholar 

  41. J. Wan, D. Wang, S. C. Hoi (2014) Deep learning for content-based image retrieval: a comprehensive study. Proceedings of the ACM International Conference on Multimedia. Orlando, FL, USA, 2014: 157–166

  42. Wang XY, Yu YJ, Yang HY (2011) An effective image retrieval scheme using color, texture and shape features. Comput Standards Interfaces 33(1):59–68

    Article  Google Scholar 

  43. Yap PT, Paramesran R (2006) Content-based image retrieval using Legendre chromaticity distribution moments. IEE Proc-Vision, Image Signal Proc 153(1):17–24

    Article  Google Scholar 

  44. Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recogn 37(1):1–19

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. No. 61472171 & 61272416, and Liaoning Research Project for Institutions of Higher Education of China under Grant No. L2013407.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Yang Wang or Hong-Ying Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Liang, LL., Li, YW. et al. Image retrieval based on exponent moments descriptor and localized angular phase histogram. Multimed Tools Appl 76, 7633–7659 (2017). https://doi.org/10.1007/s11042-016-3416-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3416-0

Keywords

Navigation