Skip to main content
Log in

Image classification using separable invariant moments of Charlier-Meixner and support vector machine

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a new method for image classification by the content in heterogeneous databases. This approach is based on the use of new series of separable discrete orthogonal moments as shape descriptors and the Support Vector Machine as classifier. In fact, the proposed descriptors moments are defined from the bivariate discrete orthogonal polynomials of Charlier-Meixner which are invariant to translation, scaling and rotation of the image. We also propose a new algorithm to accelerate the image classification process. This algorithm is based on two steps: the first step is the fast computation of the values of Charlier-Meixner polynomials by using a new recurrence relationship between the values of polynomials Charlier-Meixner. The second one is the new image representation and slice blocks. The proposed method is tested on three different sets of standard data which are well known to computer vision: COIL-100, 256-CALTECH and Corel. The simulation results show the invariance of the discrete orthogonal separable moments of Charlier-Meixner against the various geometric transformations and the ability for the classification of heterogeneous images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abu-Mostafa YS, Psaltis D (1984) Recognitive aspects of moment invariants. IEEE Trans Pattern Anal Mach Intell 6:698–706

    Article  Google Scholar 

  2. Cheng D, Xianglong L, Yadong M (2015) Large-scale multi-task image labeling with adaptive relevance discovery and feature hashing. Signal Process 112:137–145

    Article  Google Scholar 

  3. Chong C-W, Raveendran P, Mukundan R (2003) Translation invariants of Zernike moments. Pattern Recogn 36:1765–1773

    Article  MATH  Google Scholar 

  4. Chong C-W, Raveendran P, Mukundan R (2004) Translation and scale invariants of Legendre moments. Pattern Recogn 37:119–129

    Article  MATH  Google Scholar 

  5. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. Conf Comput Vis Pattern Recognit (CVPR’05) 2:886–893

    Google Scholar 

  6. Dunkl CF, Xu Y (2001) Orthogonal polynomials of several variables. Encyclopedia of mathematics and its applications, vol 81. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Fernandez L, Perez TE, Perez MA (2007) Second order partial differential equations for gradients of orthogonal polynomials in two variables. J Comput Appl Math 199:113–121

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernandez L, Prez TE, Pinar MA (2011) Orthogonal polynomials in two variables as solutions of higher order partial differential equations. J Approx Theory 163:84–97

    Article  MathSciNet  Google Scholar 

  9. Flusser J (2000) Refined moment calculation using image block representation. Image Process IEEE Trans 9(11):1977–1978

    Article  MathSciNet  MATH  Google Scholar 

  10. Garcia C, Delakis M (2004) Convolutional face finder: a neural architecture for fast and robust face detection. IEEE Trans Pattern Anal Mach Intell 26(11):1408–1423

    Article  Google Scholar 

  11. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  12. Hmimid A, Sayyouri M, Qjidaa H (2014) Image classification using a new set of separable two-dimensional discrete orthogonal invariant moments. J Electron Imaging 23(1):013026

    Article  MATH  Google Scholar 

  13. Hmimid A, Sayyouri M, Qjidaa H (2015) Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recogn 48(2):509–521

    Article  MATH  Google Scholar 

  14. Hosny KM (2007) Exact and fast computation of geometric moments for gray level images. Appl Math Comput 189:1214–1222

    MathSciNet  MATH  Google Scholar 

  15. Hosny KM (2011) Image representation using accurate orthogonal Gegenbauer moments. Pattern Recogn Lett 32:79s5–7804

    Article  Google Scholar 

  16. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory IT-8:179–187

    MATH  Google Scholar 

  17. Huijun H, Yuanxiang L, Maofu L (2014) Classification of defects in steel strip surface based on multiclass support vector machine. Multimedia Tools Applic 69(1):199–216

    Article  Google Scholar 

  18. Huijun H, Ya L, Maofu L (2016) Surface defect classification in large-scale strip steel image collection via hybrid chromosome genetic algorithm. Neurocomputing 181:86–95

    Article  Google Scholar 

  19. Jie X, Xianglong L, Zhouyuan H (2017) Multi-class support vector machine via maximizing multi-class margins”, In: The 26th International Joint Conference on Artificial Intelligence (IJCAI 2017). https://doi.org/10.24963/ijcai.2017/440

  20. Karakasis EG, Papakostas GA, Koulouriotis DE, Tourassis VD (2013) Generalized dual Hahn moment invariants. Pattern Recogn 46:1998–2014

    Article  MATH  Google Scholar 

  21. Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12:489–497

    Article  Google Scholar 

  22. Koekoek R, Lesky PA, Swarttouw RF (2010) Hypergeometric orthogonal polynomials and their q-analogues. Springer monographs in mathematics. Library of Congress control number: 2010923797

  23. Koornwinder T (1975) Two-variable analogues of the classical orthogonal polynomials. Theory and application of special functions, proceedings of the advanced seminar Madison: University of Wisconsin Press, Academic Press, pp 435–495

  24. Lei H, Xianglong L, Binqiang M (2015) Online semi-supervised annotation via proxy-based local consistency propagation. Neurocomputing 149:1573–1586

    Article  Google Scholar 

  25. Liao SX, Pawlak M (1996) On image analysis by moments. IEEE Trans Pattern Anal Mach Intell 18(3):254–266

    Article  Google Scholar 

  26. Lim C, Honarvar B, Thung KH, Paramesran R (2011) Fast computation of exact Zernike moments using cascaded digital filters. Inf Sci 181:3638–3651

    Article  MathSciNet  Google Scholar 

  27. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action 2 Activity: recognizing complex activities from sensor data. In: IJCAI, Buenos Aires, Argentina, pp 1617–1623

  28. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  29. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic interval-based model. AAAI 30:1266–1272

    Google Scholar 

  30. Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban water quality prediction based on multi-task multi-view learning

  31. Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: predicting your career path. In: AAAI, pp 201–207

  32. Liu M, Zhang L, Hu H (2016) A classification model for semantic entailment recognition with feature combination. Neurocomputing 208:127–135

    Article  Google Scholar 

  33. Liu M, JIAN L, Hu H (2017) Automatic extraction and visualization of semantic relations between medical entities from medicine instructions. Multimedia Tools Applic 76(8):10555–10573

    Article  Google Scholar 

  34. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  35. Mukundan R, Ong SH, Lee PA (2000) Image analysis by Tchebichef moments. IEEE Trans Image Process 10(9):1357–1364

    Article  MathSciNet  MATH  Google Scholar 

  36. Nikiforov AF, Suslov SK, Uvarov B (1991) Classical orthogonal polynomials of a discrete variable. Springer, New York

    Book  MATH  Google Scholar 

  37. Papakostas GA, Karakasis EG, Koulourisotis DE (2008) Efficient and accurate computation of geometric moments on gray-scale images. Pattern Recogn 41(6):1895–1904

    Article  MATH  Google Scholar 

  38. Papakostas GA, Karakasis EG, Koulouriotis DE (March 2010) Accurate and speedy computation of image Legendre moments for computer vision applications. Image Vis Comput 28(3):414–423

    Article  Google Scholar 

  39. D. Preoţiuc-Pietro, Y. Liu,, D. Hopkins and L. Ungar, Beyond binary labels: political ideology prediction of twitter users. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, vol. 1, pp 729–740, 2017

  40. Sayyouri M, Hmimd A, Qjidaa H (2012) A fast computation of Charlier moments for binary and gray-scale images. In: Information Science and Technology Colloquium (CIST). CIST, Fez, Morocco, pp 101–105, 22–24

  41. Sayyouri M, Hmimd A, Qjidaa H (2012) A fast computation of hahn moments for binary and gray-scale images. In: IEEE, International Conference on Complex Systems ICCS’12, Agadir, pp. 1–6

  42. Sayyouri M, Hmimd A, Qjidaa H (2012) A fast computation of Charlier moments for binary and gray-scale images. In: The 2nd edition of the IEEE Colloquium on Information Sciences and Technology (CIST’12). CIST, Fez, Morocco

  43. Sayyouri M, Hmimid A, Qjidaa H (2013) Improving the performance of image classification by Hahn moment invariants. J Opt Soc Am A 30:2381–2394

    Article  MATH  Google Scholar 

  44. Sayyouri M, Hmimid A, Qjidaa H (2015) A fast computation of novel set of Meixner invariant moments for image analysis. Circ Syst Signal Process Springer 34(3):875–900

    Article  MATH  Google Scholar 

  45. Shu HZ, Zhang H, Chen BJ, Haigron P, Luo LM (2010) Fast computation of Tchebichef moments for binary and gray-scale images. IEEE Trans Image Process 19(12):3171–3180

    Article  MathSciNet  MATH  Google Scholar 

  46. Spiliotis IM, Mertzios BG (1998) Real-time computation of two-dimensional moments on binary images using image block representation. IEEE Trans Image Process 7(11):1609–1615

    Article  Google Scholar 

  47. Teague MR (1980) Image analysis via the general theory of moments. J Opt Soc Amer 70:920–930

    Article  MathSciNet  Google Scholar 

  48. Teh CH, Chin RT (1988) On image analysis by the method of moments. IEEE Trans Pattern Anal Mach Intell 10(4):496–513

    Article  MATH  Google Scholar 

  49. Tsougenis ED, Papakostas GA, Koulouriotis DE (2014) Image watermarking via separable moments. Multimedia Tools Applic:1–28

  50. Vapnik V (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988–999

    Article  Google Scholar 

  51. Xu Y (2004) On discrete orthogonal polynomials of several variables. Adv Appl Math 33:615–663

    Article  MathSciNet  MATH  Google Scholar 

  52. Yap PT, Paramesran R, Ong SH (2003) Image analysis by Krawtchouk moments. IEEE Trans Image Process 12(11):1367–1377

    Article  MathSciNet  Google Scholar 

  53. Yingjie X, Luming Z, Zhenguang L (2017) Weakly supervised multimodal kernel for categorizing aerial photographs. IEEE Trans Image Process 26(8):3748–3758

    Article  MathSciNet  Google Scholar 

  54. Yonggang L, Ye Wei L, Liu J, Letian Z, Ye Liu S (2017) Towards unsupervised physical activity recognition using smartphone accelerometers. Multimedia Tools and Applic 76(8):10701–10719

    Article  Google Scholar 

  55. Yuxing H, Liqiang N (2016) An aerial image recognition framework using discrimination and redundancy quality measure. J Vis Commun Image Represent 37:53–62

    Article  Google Scholar 

  56. Zechao L, Jinhui T (2015) Weakly supervised deep metric learning for community-contributed image retrieval. IEEE Trans Multimedia 17(11):1989–1999

    Article  Google Scholar 

  57. Zechao L, Jinhui T (2017) Weakly supervised deep matrix factorization for social image understanding. IEEE Trans Image Process 26(1):276–288

    Article  MathSciNet  Google Scholar 

  58. Zechao L, Jing L, Jinhui T (2015) Robust structured subspace learning for data representation. IEEE Trans Pattern Anal Mach Intell 37(10):2085–2098

    Article  Google Scholar 

  59. Zhang H, Shu HZ, Haigron P, Li BS, Luo LM (2010) Construction of a complete set of orthogonal Fourier–Mellin moment invariants for pattern recognition applications. Image Vis Comput 28:38–44

    Article  Google Scholar 

  60. Zhang L, Yang Y, Wang M (2016) Detecting densely distributed graph patterns for fine-grained image categorization. IEEE Trans Image Process 25(2):553–565

    Article  MathSciNet  Google Scholar 

  61. Zhu H (2012) Image representation using separable two-dimensional continuous and discrete orthogonal moments. Pattern Recogn 45(4):1540–1558

    Article  MATH  Google Scholar 

  62. Zhu HQ, Shu HZ, Liang J, Luo LM, Coatrieux JL (2007) Image analysis by discrete orthogonal Racah moments. Signal Process 87(4):687–708

    Article  MATH  Google Scholar 

  63. Zhu H, Shu H, Xia T, Luo L, Coatrieux JL (2007) Translation and scale invariants of Tchebichef moments. Pattern Recogn 40:2530–2542

    Article  MATH  Google Scholar 

  64. Zhu H, Liu M, Shu H, Zhang H, Luo L (2010) General form for obtaining discrete orthogonal moments. IET Image Process 4(5):335–352

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mhamed Sayyouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hmimid, A., Sayyouri, M. & Qjidaa, H. Image classification using separable invariant moments of Charlier-Meixner and support vector machine. Multimed Tools Appl 77, 23607–23631 (2018). https://doi.org/10.1007/s11042-018-5623-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5623-3

Keywords

Navigation