Skip to main content
Log in

Context based image segmentation using antlion optimization and sine cosine algorithm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Multilevel thresholding (MTH) is one of the most commonly used approaches to perform segmentation on images. However, as most methods are based on the histogram of the image to be segmented, MTH methods only consider the occurrence frequency of certain intensity level disregarding all spatial information. Contextual information can help to enhance the quality of the segmented image as it considers not only the value of the pixel but also its vicinity. The energy curve was designed to bring spatial information into a curve with the same properties as the histogram. In this paper, two recently proposed Evolutionary Computational Algorithms (ECAs) are coupled with two classical thresholding criteria to perform MTH over the energy curve. The selected ECAs are the Antlion Optimizer (ALO) and the Sine Cosine Algorithm (SCA). The proposed methods are evaluated intensively regarding quality, and a statistical analysis is presented to compare the results of the algorithms against similar approaches. Experimental evidence encourages the use ALO for MTH while it concludes that SCA does not outperform other ECAs form the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agrawal S, Panda R, Bhuyan S, Panigrahi BK (2013) Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm Evol Comput 11:16–30. https://doi.org/10.1016/j.swevo.2013.02.001

    Article  Google Scholar 

  2. Akay B (2013) A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput J 13:3066–3091. https://doi.org/10.1016/j.asoc.2012.03.072

    Article  Google Scholar 

  3. Ali M, Siarry P, Pant M (2012) An efficient Differential Evolution based algorithm for solving multi-objective optimization problems. Eur J Oper Res 217:404–416. https://doi.org/10.1016/j.ejor.2011.09.025

    MathSciNet  MATH  Google Scholar 

  4. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  5. Bhandari AK, Kumar A, Chaudhary S, Singh GK (2016) A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms. Expert Syst Appl 63:112–133. https://doi.org/10.1016/j.eswa.2016.06.044

    Article  Google Scholar 

  6. Cheng HD, Jiang XH, Wang J (2002) Color image segmentation based on homogram thresholding and region merging. Pattern Recogn 35:373–393. https://doi.org/10.1016/S0031-3203(01)00054-1

    Article  MATH  Google Scholar 

  7. Cuevas E, Zaldivar D, Pérez-Cisneros M (2010) A novel multi-threshold segmentation approach based on differential evolution optimization. Expert Syst Appl 37:5265–5271. https://doi.org/10.1016/j.eswa.2010.01.013

    Article  Google Scholar 

  8. David G (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn. Addison-Wesley, Boston

    MATH  Google Scholar 

  9. Dehshibi MM, Sourizaei M, Fazlali M et al (2017) A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding. Multimed Tools Appl. https://doi.org/10.1007/s11042-016-3891-3

  10. Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. Proc 1999 Congr Evol Comput (Cat No 99TH8406) 2:1470–1477. https://doi.org/10.1109/CEC.1999.782657

    Article  Google Scholar 

  11. Dorigo M, Gambardella LM (1996) Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. System 1:1–24

    Google Scholar 

  12. Dorigo M, Maniezzo V, Colorni A (1996) The ant systems: optimization by a colony of cooperative agents. IEEE Trans Man Mach Cybern B 26

  13. El Aziz MA, Ewees AA, Hassanien AE (2017) Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. Expert Syst Appl 83:242–256. https://doi.org/10.1016/j.eswa.2017.04.023

    Article  Google Scholar 

  14. Gao H, Xu W, Sun J, Tang Y (2010) Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. IEEE Trans Instrum Meas 59:934–946. https://doi.org/10.1109/TIM.2009.2030931

    Article  Google Scholar 

  15. Gao H, Pun C-M, Kwong S (2016) An efficient image segmentation method based on a hybrid particle swarm algorithm with learning strategy. Inf Sci (Ny) 369:500–521. https://doi.org/10.1016/j.ins.2016.07.017

    Article  MathSciNet  Google Scholar 

  16. García S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization. J Heuristics 15:617–644. https://doi.org/10.1007/s10732-008-9080-4

    Article  MATH  Google Scholar 

  17. Ghamisi P, Couceiro MS, Benediktsson JA, Ferreira NMF (2012) An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst Appl 39:12407–12417. https://doi.org/10.1016/j.eswa.2012.04.078

    Article  Google Scholar 

  18. Ghosh S, Bruzzone L, Patra S et al (2007) A Context-Sensitive Technique for Unsupervised Change Detection Based on Hopfield-Type Neural Networks. IEEE Trans Geosci Remote Sens 45:778–789. https://doi.org/10.1109/TGRS.2006.888861

    Article  Google Scholar 

  19. Gonzalez RC, Woods RE (1992) Digital Image Processing. Pearson, Prentice-Hall

    Google Scholar 

  20. Gupta E, Saxena A (2016) Grey wolf optimizer based regulator design for automatic generation control of interconnected power system. Cogent Eng. https://doi.org/10.1080/23311916.2016.1151612

  21. Hafez AI, Zawbaa HM, Emary E, Hassanien AE Sine Cosine Optimization Algorithm for Feature Selection 1–5

  22. Hammouche K, Diaf M, Siarry P (2008) A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput Vis Image Underst 109:163–175. https://doi.org/10.1016/j.cviu.2007.09.001

    Article  Google Scholar 

  23. Hammouche K, Diaf M, Siarry P (2010) A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Eng Appl Artif Intell 23:676–688. https://doi.org/10.1016/j.engappai.2009.09.011

    Article  Google Scholar 

  24. Horng M-H, Liou R-J (2011) Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Syst Appl 38:14805–14811. https://doi.org/10.1016/j.eswa.2011.05.069

    Article  Google Scholar 

  25. Hussein WA, Sahran S, Abdullah SNHS (2016) A fast scheme for multilevel thresholding based on a modified bees algorithm. Knowledge-Based Syst 101:114–134. https://doi.org/10.1016/j.knosys.2016.03.010

    Article  Google Scholar 

  26. Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. 273–285

  27. Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vision Graph Image Proc 29:273–285

    Article  Google Scholar 

  28. Kennedy J, Eberhart RC (1995) Particle swarm optimization. Neural Networks, 1995 Proceedings. IEEE Int Conf 4:1942–1948. https://doi.org/10.1109/ICNN.1995.488968

    Google Scholar 

  29. Kumar S, Kumar P, Sharma TK, Pant M (2013) Bi-level thresholding using PSO, Artificial Bee Colony and MRLDE embedded with Otsu method. Memetic Comput 5:323–334. https://doi.org/10.1007/s12293-013-0123-5

    Article  Google Scholar 

  30. Li L, Sun L, Guo J et al (2017) Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding. Comput Intell Neurosci. https://doi.org/10.1155/2017/3295769

  31. Lin Z, Lei Z, XuanqinMou DZ (2011) FSIM : A Feature Similarity Index for Image. IEEE Trans Image Process 20:2378–2386

    Article  MathSciNet  MATH  Google Scholar 

  32. Maitra M, Chatterjee A (2008) A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding. Expert Syst Appl 34:1341–1350. https://doi.org/10.1016/j.eswa.2007.01.002

    Article  Google Scholar 

  33. Merrikh-Bayat F (2015) The runner-root algorithm: A metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Appl Soft Comput J 33:292–303. https://doi.org/10.1016/j.asoc.2015.04.048

    Article  Google Scholar 

  34. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  35. Mirjalili S (2015) SCA: A Sine Cosine Algorithm for solving optimization problems. Knowledge-Based Syst 0:1–14. doi: https://doi.org/10.1016/j.knosys.2015.12.022

  36. Oh I-S, Lee J-S, Moon B-R (2004) Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell 26:1424–1437. https://doi.org/10.1109/TPAMI.2004.105

    Article  Google Scholar 

  37. Oliva D, Cuevas E, Pajares G et al (2014) A Multilevel thresholding algorithm using electromagnetism optimization. Neurocomputing 139:357–381

    Article  Google Scholar 

  38. Oliva D, Osuna-Enciso V, Cuevas E et al (2015) Improving segmentation velocity using an evolutionary method. Expert Syst Appl 42:5874–5886. https://doi.org/10.1016/j.eswa.2015.03.028

    Article  Google Scholar 

  39. Oliva D, Hinojosa S, Cuevas E et al (2017) Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm. Expert Syst Appl 79:164–180. https://doi.org/10.1016/j.eswa.2017.02.042

    Article  Google Scholar 

  40. Otsu N (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern 9:62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  41. Ouadfel S, Taleb-Ahmed A (2016) Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study. Expert Syst Appl 55:566–584. https://doi.org/10.1016/j.eswa.2016.02.024

    Article  Google Scholar 

  42. Pare S, Kumar A, Bajaj V, Singh GK (2016) A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve. Appl Soft Comput J 47:76–102. https://doi.org/10.1016/j.asoc.2016.05.040

    Article  Google Scholar 

  43. Pare S, Bhandari AK, Kumar A, Singh GK (2017) An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix. Expert Syst Appl 87:335–362. https://doi.org/10.1016/j.eswa.2017.06.021

    Article  Google Scholar 

  44. Patra S, Gautam R, Singla A (2014) A novel context sensitive multilevel thresholding for image segmentation. Appl Soft Comput J 23:122–127. https://doi.org/10.1016/j.asoc.2014.06.016

    Article  Google Scholar 

  45. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1:33–57. https://doi.org/10.1007/s11721-007-0002-0

    Article  Google Scholar 

  46. Sahoo P, Soltani S, Wong AK (1988) A survey of thresholding techniques. Comput Vision Graph Image Proc 41:233–260. https://doi.org/10.1016/0734-189X(88)90022-9

    Article  Google Scholar 

  47. Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13:146–168. https://doi.org/10.1117/1.1631316

    Article  Google Scholar 

  48. Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185:1155–1173. https://doi.org/10.1016/j.ejor.2006.06.046

    Article  MathSciNet  MATH  Google Scholar 

  49. Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim

  50. Suresh S, Lal S (2017) Multilevel thresholding based on Chaotic Darwinian Particle Swarm Optimization for segmentation of satellite images. Appl Soft Comput J 55:503–522. https://doi.org/10.1016/j.asoc.2017.02.005

    Article  Google Scholar 

  51. Tang K, Yuan X, Sun T et al (2011) An improved scheme for minimum cross entropy threshold selection based on genetic algorithm. Knowledge-Based Syst 24:1131–1138. https://doi.org/10.1016/j.knosys.2011.02.013

    Article  Google Scholar 

  52. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13:600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  53. Wilcoxon F (1945) Individual Comparisons by Ranking Methods. Biom Bull 1:80. https://doi.org/10.2307/3001968

    Article  Google Scholar 

  54. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  55. Yamany W, Tharwat A, Hassanin MF, et al (2016) A New Multi-layer Perceptrons Trainer Based on Ant Lion Optimization Algorithm. Proc - 2015 4th Int Conf Inf Sci Ind Appl ISI 2015 40–45. doi: https://doi.org/10.1109/ISI.2015.9

  56. Yang X-S (2014) Cuckoo Search and Firefly Algorithm: Overview and Analysis. In: Cuckoo Search and Firefly Algorithm. Springer Berlin Heidelberg, 1–26

  57. Yin P-YP (2007) Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Appl Math Comput 184:503–513. https://doi.org/10.1109/SNPD.2007.85

    MathSciNet  MATH  Google Scholar 

  58. Zawbaa HM, Emary E, Grosan C (2016) Feature selection via chaotic antlion optimization. PLoS One 11:1–21. https://doi.org/10.1371/journal.pone.0150652

    Google Scholar 

  59. Zhang J, Li H, Tang Z et al (2014) An improved quantum-inspired genetic algorithm for image multilevel thresholding segmentation. Math Probl Eng. https://doi.org/10.1155/2014/295402

  60. Zheng GY, Xing ZW, Peng JP et al (2015) Multi-object extraction from topview group-housed pig images based on adaptive partitioning and multilevel thresholding segmentation. Biosyst Eng 135:54–60. https://doi.org/10.1016/j.biosystemseng.2015.05.001

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges to Mexican Government for partially supporting this research under the program for New Full Time Professors 2017 of PRODEP. The authors second and fourth acknowledge to CONACYT for the grants 298283 and 234148, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Oliva.

Additional information

All authors are affiliated with International Research Team.

Electronic supplementary material

ESM 1

(DOCX 12567 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliva, D., Hinojosa, S., Elaziz, M.A. et al. Context based image segmentation using antlion optimization and sine cosine algorithm. Multimed Tools Appl 77, 25761–25797 (2018). https://doi.org/10.1007/s11042-018-5815-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5815-x

Keywords

Navigation