Skip to main content

Advertisement

Log in

Soft computing approaches for image segmentation: a survey

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image segmentation is the method of partitioning an image into a group of pixels that are homogenous in some manner. The homogeneity dependents on some attributes like intensity, color etc. Segmentation being a pre-processing step in image processing have been used in the number of applications like identification of objects to medical images, satellite images and much more. The taxonomy of an image segmentation methods collectively can be divided among two categories Traditional methods and Soft Computing (SC) methods. Unlike Traditional methods, SC methods have the ability to simulate human thinking and are flexible to work with their ownership function, have been predominantly applied to the task of image segmentation. SC techniques are tolerant of partial truth, imprecision, uncertainty, and approximations. Soft Computing approaches also having advantages of providing cost-effective, high performance and steadfast solutions. In this survey paper, our emphasis is on core SC approaches like Fuzzy logic, Artificial Neural Network, and Genetic Algorithm used for image segmentation. The contribution lies in the fact to present this paper to the researchers that explore state-of-the-art elaboration of almost all dimensions associated with the image segmentation. The idea is to encapsulate various aspects like emerging topics, methods, evaluation parameters, the problem associated with different type of images, databases, segmentation applications, and other resources so that, it could be advantageous for researchers to make effort in developing new methods for segmentation. The paper accomplishes with findings and concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abdel-Khalek S, Ben Ishak A, Omer OA, Obada ASF (2017) A two-dimensional image segmentation method based on genetic algorithm and entropy. Optik 131:414–422. https://doi.org/10.1016/j.ijleo.2016.11.039

    Article  Google Scholar 

  2. Abedin MZ et al (2016) Traffic sign recognition using hybrid features descriptor and artificial neural network classifier. 19th international conference on computer and information technology, December, 2016. https://doi.org/10.1109/ICCITECHN.2016.7860241

  3. Aghajaria E, Chandrashekhar GD (2017) Self-organizing map based extended fuzzy C-means (SEEFC) algorithm for image segmentation. Appl Soft Comput 54:347–363. https://doi.org/10.1016/j.asoc.2017.01.003

    Article  Google Scholar 

  4. Agrawal S, Panda R, Dora L (2014) A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches. Appl Soft Comput 24:522–533. https://doi.org/10.1016/j.asoc.2014.08.011

    Article  Google Scholar 

  5. Al-Dmour H, Al-Ani A (2016) MR brain image segmentation based on unsupervised and semi-supervised fuzzy clustering methods. 2016 I.E. international conference on digital image computing: techniques and applications (DICTA), pp 1–7. https://doi.org/10.1109/DICTA.2016.7797066

  6. Al-Sahaf H et al (2017) Automatically evolving rotation-invariant texture image descriptors by genetic programming. IEEE Trans Evol Comput 21(1):83–101. https://doi.org/10.1109/TEVC.2016.2577548

    Article  Google Scholar 

  7. Ananthi VP, Balasubramaniam P (2016) A new thresholding technique based on fuzzy set as an application to leukocyte nucleus segmentation. Comput Methods Prog Biomed 134(C):165–177. https://doi.org/10.1016/j.cmpb.2016.07.002

    Article  Google Scholar 

  8. Ananthi VP, Balasubramaniam P, Kalaiselvi T (2016) A new fuzzy clustering algorithm for the segmentation of brain tumor. Soft Comput 20:4859–4879. https://doi.org/10.1007/s00500-015-1775-5

    Article  Google Scholar 

  9. Andrey P, Tarroux P (1994) Unsupervised image segmentation using a distributed genetic algorithm. Pattern Recogn 27(5):659–673. https://doi.org/10.1016/0031-3203(94)90045-0

    Article  Google Scholar 

  10. Angel Arul Jothi J, Mary Anita Rajam V (2017) A survey on automated cancer diagnosis from histopathology images. Artif Intell Rev 48:31–81. https://doi.org/10.1007/s10462-016-9494-6

    Article  Google Scholar 

  11. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216. https://doi.org/10.1109/TMI.2016.2535865

    Article  Google Scholar 

  12. Aparajeeta J, Nanda PK, Das N (2016) Modified possibilistic fuzzy C-means algorithms for segmentation of magnetic resonance image. Appl Soft Comput 41(C):104–119. https://doi.org/10.1016/j.asoc.2015.12.003

    Article  Google Scholar 

  13. Arumugadevi S, Seenivasagam V (2016) Color image segmentation using feedforward neural networks with FCM. Int J Autom Comput 13(5):491–500. https://doi.org/10.1007/s11633-016-0975-5

    Article  Google Scholar 

  14. Awad M, Chehdi K, Nasri A (2007) Multicomponent image segmentation using a genetic algorithm and artificial neural network. IEEE Geosci Remote Sens Lett 4(4):571–575. https://doi.org/10.1109/LGRS.2007.903064

    Article  Google Scholar 

  15. Awad M et al (2009) Multi-component image segmentation using a hybrid dynamic genetic algorithm and fuzzy C-means. IET Image Process 3(2):52–62. https://doi.org/10.1049/iet-ipr.2007.0213

    Article  Google Scholar 

  16. Baazaouia A, Barhoumi W, Ahmed A, Zagrouba E (2017) Semi-automated segmentation of single and multiple tumors in liver CT images using entropy-based fuzzy region growing. IRBM 38:98–108. https://doi.org/10.1016/j.irbm.2017.02.003

    Article  Google Scholar 

  17. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for scene segmentation. IEEE Trans Pattern Anal Mach Intell 39:2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  18. Badura P, Pietka E (2014) Soft computing approach to 3D lung nodule segmentation in CT. Comput Biol Med 53:230–243. https://doi.org/10.1016/j.compbiomed.2014.08.005

    Article  Google Scholar 

  19. Bahadure NB et al (2016) Performance analysis of image segmentation using watershed algorithm, fuzzy C – means of clustering algorithm and Simulink design. 2016 3rd international conference on computing for sustainable global development (INDIACom), pp 1160–1164

  20. Bai X et al (2016) Feature based fuzzy inference system for segmentation of low-contrast infrared ship images. Appl Soft Comput 46(C):128–142. https://doi.org/10.1016/j.asoc.2016.05.004

    Article  Google Scholar 

  21. Balamurugan M et al (2017) Application of soft computing methods for grid connected PV system: a technological and status review. Renew Sust Energ Rev. https://doi.org/10.1016/j.rser.2016.11.210

    Article  Google Scholar 

  22. Bali A, Singh SN (2015) A review on the strategies and techniques of image segmentation. 2015 fifth international conference on advanced computing & communication technologies. https://doi.org/10.1109/ACCT.2015.63

  23. Balla-Arabe S, Gao X, Wang B (2013) A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method. IEEE Trans Cybern 43(3):910–920. https://doi.org/10.1109/TSMCB.2012.2218233

    Article  Google Scholar 

  24. Barkana BD, Saricicek I, Yildirim B (2017) Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion. Knowl-Based Syst 118:165–176. https://doi.org/10.1016/j.knosys.2016.11.022

    Article  Google Scholar 

  25. Bedruz RA et al (2016) Philippine vehicle plate localization using image thresholding and genetic algorithm. 2016 I.E. TENCON conference 2016, pp 2822–2825. https://doi.org/10.1109/TENCON.2016.7848557

  26. Bedruz RA et al (2016) Fuzzy logic based vehicular plate character recognition system using image segmentation and scale-invariant feature transform. 2016 I.E. region 10 conference (TENCON), pp 676–681. https://doi.org/10.1109/TENCON.2016.7848088

  27. Benalcazar ME et al (2014) Automatic design of aperture filters using neural networks applied to ocular image segmentation. 2014 22nd IEEE european signal processing conference (EUSIPCO), pp 2195–2199

  28. Bertasius G et al Convolutional RandomWalk networks for semantic image segmentation. IEEE Conf Comput Vision Pattern Recogn (CVPR). https://doi.org/10.1109/CVPR2017.650

  29. Bhattacharyya S, Maulik U, Dutta P (2010) Multilevel image segmentation with adaptive image context based thresholding. Appl Soft Comput 11:946–962. https://doi.org/10.1016/j.asoc.2010.01.015

    Article  Google Scholar 

  30. Bhaumik H, Bhattacharyya S, Nath MD, Chakraborty S (2016) Hybrid soft computing approaches to content based video retrieval: a brief review. Appl Soft Comput 46:1008–1029. https://doi.org/10.1016/j.asoc.2016.03.022

    Article  Google Scholar 

  31. Borges VR, Guliato D, Barcelos CAZ, Batista MA (2015) An iterative fuzzy region competition algorithm for multiphase image segmentation. Soft Comput 19:339–351. https://doi.org/10.1007/s00500-014-1256-2l

    Article  Google Scholar 

  32. Bose A, Mali K (2016) Fuzzy-based artificial bee colony optimization for gray image segmentation. SIViP 10:109–1096. https://doi.org/10.1007/s11760-016-0863-z

    Article  Google Scholar 

  33. Brosch T, Tam R (2015) Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images. Neural Comput 27:211–227. https://doi.org/10.1162/NECO_a_00682

    Article  Google Scholar 

  34. Cao H (2012) Segmentation of M-FISH images for improved classification of chromosomes with an adaptive fuzzy C-means clustering algorithm. IEEE Trans Fuzzy Syst 20(1):1–8. https://doi.org/10.1109/TFUZZ.2011.2160025

    Article  Google Scholar 

  35. Caponetti L, Castiello C, Górecki P (2008) Document page segmentation using neuro-fuzzy approach. Appl Soft Comput 8:118–126. https://doi.org/10.1016/j.asoc.2006.11.008

    Article  Google Scholar 

  36. Chamalis T, Likas A (2017) Region merging for image segmentation based on unimodality tests. In: 2017 3rd IEEE International Conference on control automation and robotics. https://doi.org/10.1109/ICCAR.2017.7942722

  37. Chan T-H et al (2015) PCANet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032. https://doi.org/10.1109/TMI.2016.262118510.1109/TIP.2015.2475625

    Article  MathSciNet  Google Scholar 

  38. Chang C-Y (2011) A neural network for thyroid segmentation and volume estimation in CT images. IEEE Comput Intell Mag 6(4):43–55. https://doi.org/10.1109/MCI.2011.942756

    Article  Google Scholar 

  39. Chang F-J, Chang L-C, Huang C-W, Kao I-F (2016) Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. J Hydrol 541(part B):965–976. https://doi.org/10.1016/j.jhydrol.2016.08.006

    Article  Google Scholar 

  40. Chen G-C, Juang C-F (2013) Object detection using color entropies and a fuzzy classifier. IEEE Comput Intell Mag 8(1):33–45. https://doi.org/10.1109/MCI.2012.2228592

    Article  Google Scholar 

  41. Chen X et al (2014) Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci Remote Sens Lett 11(10):1797–1801. https://doi.org/10.1109/LGRS.2014.2309695

    Article  Google Scholar 

  42. Chen Y et al (2015) Region-based object recognition by color segmentation using a simplified PCNN. IEEE Trans Neural Netw Learn Sys 26(8):1682–1697. https://doi.org/10.1109/TNNLS.2014.2351418

    Article  MathSciNet  Google Scholar 

  43. Chen Y, Zhang H, Zheng Y, Jeon B, Wu QMJ (2016) An improved anisotropic hierarchical fuzzyc-means method based on multivariate student t-distribution for brain MRI segmentation. Pattern Recogn 60:778–792. https://doi.org/10.1016/j.patcog.2016.06.020

    Article  Google Scholar 

  44. Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251. https://doi.org/10.1109/TGRS.2016.2584107

    Article  Google Scholar 

  45. Chen Y, Li J, Zhang H, Zheng Y, Jeon B, Wu QJ (2016) Non-local-based spatially constrained hierarchical fuzzy C-means method for brain magnetic resonance imaging segmentation. IET Image Process 10:865–876. https://doi.org/10.1049/iet-ipr.2016.0271

    Article  Google Scholar 

  46. Chen SW, Shivakumar SS, Dcunha S, Das J, Okon E, Qu C, Taylor CJ, Kumar V (2017) Counting apples and oranges with deep learning: a data driven approach. IEEE Robot Autom Lett 2(2):781–788. https://doi.org/10.1109/LRA.2017.2651944

    Article  Google Scholar 

  47. Cheng G, Zhou P, Han J (2016) Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans Geosci Remote Sens 54(12):7405–7415. https://doi.org/10.1109/TGRS.2016.2601622

    Article  Google Scholar 

  48. Cheng D, Meng G, Cheng G, Pan C (2017) SeNet: structured edge network for sea–land segmentation. IEEE Geosci Remote Sens Lett 14(2):247–251. https://doi.org/10.1109/LGRS.2016.2637439

    Article  Google Scholar 

  49. Chi Z, Yan H (1993) Map image segmentation based on thresholding and fuzzy rules. Electron Lett 29(21):1841–1843. https://doi.org/10.1049/el:19931225

    Article  Google Scholar 

  50. Chinmayi P et al (2014) Survey of image processing techniques in medical image analysis: challenges and methodologies. Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016). Adv Intell Syst Comput 614:460–471. https://doi.org/10.1007/978-3-319-60618-7_45

    Article  Google Scholar 

  51. Chinnasamy S (2014) Performance improvement of fuzzy-based algorithms for medical image retrieval. IET Image Process 8(6):319–326. https://doi.org/10.1049/iet-ipr.2012.0510

    Article  Google Scholar 

  52. Chiranjeevi P, Sengupta S (2014) Neighborhood supported model level fuzzy aggregation for moving object segmentation. IEEE Trans Image Process 23(2):645–657

    Article  MathSciNet  MATH  Google Scholar 

  53. Choy SK (2011) Image segmentation using fuzzy region competition and spatial/frequency information. IEEE Trans Image Process 20(6):1473–1484. https://doi.org/10.1109/TIP.2010.2095023

    Article  MathSciNet  MATH  Google Scholar 

  54. Choy SK, Lam SY, Yu KW, Lee WY, Leung KT (2017) Fuzzy model-based clustering and its application in image segmentation. Pattern Recogn 68:141–157. https://doi.org/10.1016/j.patcog.2017.03.009

    Article  Google Scholar 

  55. Chun DN, Yang HYUNS (1996) Robust image segmentation using genetic algorithm with a fuzzy measure. Pattern Recogn 29(7):1195–1211. https://doi.org/10.1016/0031-3203(95)00148-4

    Article  Google Scholar 

  56. Cordeiro FR, Santos WP, Silva-Filho AG (2016) An adaptive semi-supervised fuzzy GrowCut algorithm to segment masses of regions of interest of mammographic images. Appl Soft Comput 46:613–628. https://doi.org/10.1016/j.asoc.2015.11.040

    Article  Google Scholar 

  57. Das S, De S (2016) Multilevel color image segmentation using modified genetic algorithm (MfGA) inspired Fuzzy C-means clustering. 2016 second international conference on research in computational intelligence and communication networks (ICRCICN), pp 78–83. https://doi.org/10.1109/ICRCICN.2016.7813635

  58. De S et al (2012) Color image segmentation using parallel OptiMUSIG activation function. Appl Soft Comput 12:3228–3236. https://doi.org/10.1016/j.asoc.2012.05.011

    Article  Google Scholar 

  59. De S et al (2016) Automatic magnetic resonance image segmentation by fuzzy intercluster hostility index based genetic algorithm: an application. Appl Soft Comput 47:669–683. https://doi.org/10.1016/j.asoc.2016.05.042

    Article  Google Scholar 

  60. Demirhan A, Toru M, Guler I (2015) Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks. IEEE J Biomed Health Inf 19(4):1451–1458. https://doi.org/10.1109/JBHI.2014.2360515

    Article  Google Scholar 

  61. Deng W-Q, Li X-M, Gao X, Zhang C-M (2016) A modified fuzzy C-means algorithm for brain MR image segmentation and Bias field correction. J Comput Sci Technol 31(3):501–511. https://doi.org/10.1007/s11390-016-1643-5

    Article  MathSciNet  Google Scholar 

  62. Dey J et al (2016) Moving object detection using genetic algorithm for traffic surveillance. international conference on electrical, electronics, and optimization techniques (ICEEOT) – 2016, pp 2289–2293. https://doi.org/10.1109/ICEEOT.e2016.7755101

  63. Dileep G, Singh SN (2017) Application of soft computing techniques for maximum power point tracking of SPV system. Sol Energy 141:182–202. https://doi.org/10.1016/j.solener.2016.11.034

    Article  Google Scholar 

  64. Ding J et al (2016) Convolutional neural network with data augmentation for SAR target recognition. IEEE Geosci Remote Sens Lett 13(3):364–368. https://doi.org/10.1109/LGRS.2015.2513754

    Article  Google Scholar 

  65. Dong J et al (2014) Towards unified object detection and semantic segmentation. Europ Confn Comput Vis (ECCV) 8693:299–214. https://doi.org/10.1007/978-3-319-10602-1_20

    Article  Google Scholar 

  66. Dong Z, Wu Y, Pei M, Jia Y (2015) Vehicle type classification using a Semisupervised convolutional neural network. IEEE Trans Intell Transp Syst 16(4):2247–2256. https://doi.org/10.1109/TITS.2015.2402438

    Article  Google Scholar 

  67. Dosovitskiy A et al (2017) Learning to Generate Chairs, Tables and Cars with Convolutional Networks. IEEE Trans Pattern Anal Mach Intell 39(4):692–705. https://doi.org/10.1109/TPAMI.2016.2567384

    Article  Google Scholar 

  68. Fakhry A, Zeng T, Ji S (2017) Residual deconvolutional networks for brain electron microscopy image segmentation. IEEE Trans Med Imaging 36(2):447–456. https://doi.org/10.1109/TMI.2016.2613019

    Article  Google Scholar 

  69. Fan Y et al (2002) Volumetric segmentation of brain images using parallel genetic algorithms. IEEE Trans Med Imaging 21(8):904–909. https://doi.org/10.1109/TMI.2002.803126

    Article  Google Scholar 

  70. Feng C, Zhao D, Huang M (2016) Segmentation of longitudinal brain MR images using bias correction embedded fuzzy c-means with non-locally spatio-temporal regularization. J Vis Commun Image Represent 38(C):517–529. https://doi.org/10.1016/j.jvcir.2016.03.027

    Article  Google Scholar 

  71. Francis J, Anto Sahaya Dhas D and Anoop BK (2016) Identification of leaf diseases in pepper plants using soft computing techniques. 2016 I.E. conference on emerging devices and smart systems (ICEDSS), pp. 168–173. https://doi.org/10.1109/ICEDSS.2016.7587787

  72. Francisco V, Mesa H, Morente L (2010) Binary tissue classification on wound images with neural networks and Bayesian classifiers. IEEE Trans Med Imaging 29(2):410–427. https://doi.org/10.1109/TMI.2009.2033595

    Article  Google Scholar 

  73. Franklin W, Edward Rajan S (2014) Retinal vessel segmentation employing ANN technique by Gabor and moment invariants-based features. Appl Soft Comput 22:94–100. https://doi.org/10.1016/j.asoc.2014.04.024

    Article  Google Scholar 

  74. Fu H, Chi Z (2006) Combined thresholding and neural network approach for vein pattern extraction from leaf images. IEEE Proc Vis Image Signal Process 153(6):881–892. https://doi.org/10.1049/ip-vis:20060061

    Article  Google Scholar 

  75. Ghamisi P, Chen Y, Zhu XX (2016) A self-improving convolution neural network for the classification of hyperspectral data. IEEE Geosci Remote Sens Lett 13(10):1537–1541. https://doi.org/10.1109/LGRS.2016.2595108

    Article  Google Scholar 

  76. Gharieb RR, Gendy G, Abdelfattah A (2017) C-means clustering fuzzified by two membership relative entropy functions approach incorporating local data information for noisy image segmentation. SIViP 11(3):541–548. https://doi.org/10.1007/s11760-016-0992-4

    Article  Google Scholar 

  77. Ghosh P, Mitchell M, Tanyi JA, Hung AY (2016) Incorporating priors for medical image segmentation using a genetic algorithm. Neurocomputing 195:181–194. https://doi.org/10.1016/j.neucom.2015.09.123

    Article  Google Scholar 

  78. Gobikrishnan M, Rajalakshmi T, Snekhalatha U (2016) Diagnosis of rheumatoid arthritis in knee using fuzzy C means segmentation technique. Int Conf Commun Signal Process 430–433. https://doi.org/10.1109/ICCSP.2016.7754172

  79. Gorobets AN (2017) Segmentation for detecting buildings in infrared space images. 2017 XI IEEE international conference on antenna theory and techniques (ICATT), pp 364–366

  80. Gotardo PFU, Bellon ORP, Boyer KL, Silva L (2004) Range image segmentation into planar and quadric surfaces using an improved robust estimator and genetic algorithm. IEEE Trans Syst Man Cybernet-Part B: Cybernet 34(6):2303–2316. https://doi.org/10.1109/TSMCB.2004.835082

    Article  Google Scholar 

  81. Guoying L, Zhang Y, Wang A (2015) Incorporating adaptive local information into fuzzy clustering for image segmentation. IEEE Trans Image Process 24(11):3990–4000

    Article  MathSciNet  Google Scholar 

  82. Gupta S et al (2014) Learning rich features from RGB-D images for object detection and segmentation. Europ Confn Comput Vis (ECCV) 8695:345–360. https://doi.org/10.1007/978-3-319-10584-0_23

    Article  Google Scholar 

  83. Hameed S, Hasan O (2016) Towards autonomous collision avoidance in surgical robots using image segmentation and genetic algorithms. 2016 I.E. region 10 symposium (TENSYMP), pp 266–270. https://doi.org/10.1109/TENCONSrpring.2016.7519416

  84. Hammouche K et al (2008) A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput Vis Image Underst 109:163–175. https://doi.org/10.1016/j.cviu.2007.09.001

    Article  Google Scholar 

  85. Hassanien AE, Moftah HM, Azar AT, Shoman M (2014) MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Appl Soft Comput 14:62–71. https://doi.org/10.1016/j.asoc.2013.08.011

    Article  Google Scholar 

  86. Hata Y, Kobashi S (2009) Fuzzy segmentation of endorrhachis in magnetic resonance images and its fuzzy maximum intensity projection. Appl Soft Comput 9:1156–1169. https://doi.org/10.1016/j.asoc.2009.03.001

    Article  Google Scholar 

  87. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P-M, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31. https://doi.org/10.1016/j.media.2016.05.004

    Article  Google Scholar 

  88. Helmy AK, El-Taweel GS (2016) Image segmentation scheme based on SOM–PCNN in frequency domain. Appl Soft Comput 40:405–415. https://doi.org/10.1016/j.asoc.2015.11.042

    Article  Google Scholar 

  89. Hiwa S et al (2016) Region-of-interest extraction of MRI data using genetic algorithms. 2016 I.E. symposium series on computational intelligence (SSCI), pp 1–7. :https://doi.org/10.1109/SSCI.2016.7850135

  90. Hiziroglu AK (2013) Soft computing applications in customer segmentation: state-of-art review and critique. Expert Syst Appl 40:6491–6507. https://doi.org/10.1016/j.eswa.2013.05.052

    Article  Google Scholar 

  91. Huang Y, Lan Y, Thomson SJ, Fang A, Hoffmann WC, Lacey RE (2010) Development of soft computing and applications in agricultural and biological engineering. Comput Electron Agric 71(2):107–127. https://doi.org/10.1016/j.compag.2010.01.001

    Article  Google Scholar 

  92. Huang C-W, Lin K-P, Wu M-C, Hung K-C, Liu G-S, Jen C-H (2015) Intuitionistic fuzzy c-means clustering algorithm with neighborhood attraction in segmenting medical image. Soft Comput 19:459–470. https://doi.org/10.1007/s00500-014-1264-2

    Article  Google Scholar 

  93. Huang W-B et al (2016) Multi-target osteosarcoma MRI recognition with texture context features based on CRF. 2016 international joint conference on neural networks (IJCNN), pp 3978–3983. https://doi.org/10.1109/IJCNN.2016.7727716

  94. Hung C-L, Wu Y-H (2016) Parallel genetic-based algorithm on multiple embedded graphic processing units for brain magnetic resonance imaging segmentation. Comput Electr Eng 1–11. https://doi.org/10.1016/j.compeleceng.2016.09.028.

    Article  Google Scholar 

  95. Ibrahim D (2016) An overview of soft computing. 12th international conference on application of Fuzzy systems and soft computing, ICAFS 2016, Vienna, Austria, Procedia Computer Science, vol. 102, pp 34–38, 29–30 August 2016. https://doi.org/10.1016/j.procs.2016.09.366

    Article  Google Scholar 

  96. Indragandhi V, Subramaniyaswamy V, Logesh R (2017) Resources, configurations, and soft computing techniques for power management and control of PV/wind hybrid system. Renew Sust Energ Rev 69:129–143. https://doi.org/10.1016/j.rser.2016.11.209

    Article  Google Scholar 

  97. Izadi M et al (2017) A new neuro-fuzzy approach for post-earthquake road damage assessment using GA and SVM classification from QuickBird satellite images. J Indian Soc Remote Sens:1–13. https://doi.org/10.1007/s12524-017-0660-3

    Article  Google Scholar 

  98. Janc K, Tarasiuk J, Bonnet AS, Lipinski P (2013) Genetic algorithms as a useful tool for trabecular and cortical bone segmentation. Comput Methods Prog Biomed 111:72–83. https://doi.org/10.1016/j.cmpb.2013.03.012

    Article  Google Scholar 

  99. Javed U, Raiz MM, Ghafoor A, Cheema TA (2016) SAR image segmentation based on active contours with fuzzy logic. IEEE Trans Aerosp Electron Syst 52(1):181–188. https://doi.org/10.1109/TAES.2015.120817

    Article  Google Scholar 

  100. Javier Herrera P et al (2011) A segmentation method using Otsu and fuzzy k-means for stereovision matching in hemispherical images from forest environments. Appl Soft Comput 11:4738–4747. https://doi.org/10.1016/j.asoc.2011.07.010

    Article  Google Scholar 

  101. Jeon B-K et al (2002) Road detection in Spaceborne SAR images using a genetic algorithm. IEEE Trans Geosci Remote Sens 40(1):22–29. https://doi.org/10.1109/36.981346

    Article  Google Scholar 

  102. Ji J, Wang K-L (2014) A robust nonlocal fuzzy clustering algorithm with between-cluster separation measure for SAR image segmentation. IEEE J Sel Topics Appl Earth Obs Remote Sens 7(12):4929–4936. https://doi.org/10.1109/JSTARS.2014.2308531

    Article  Google Scholar 

  103. Ji Z, Xia Y et al (2012) Fuzzy local Gaussian mixture model for brain MR image segmentation. IEEE Trans Inf Technol Biomed 16(3):339–347. https://doi.org/10.1109/TITB.2012.2185852

    Article  MathSciNet  Google Scholar 

  104. Jiang X-L, Wang Q, He B, Chen S-J, Li B-L (2016) Robust level set image segmentation algorithm using local correntropy-based fuzzy c-means clustering with spatial constraints. Neurocomputing 207:22–35. https://doi.org/10.1016/j.neucom.2016.03.046

    Article  Google Scholar 

  105. Jiao L, Gong M, Wang S, Hou B, Zheng Z, Wu Q (2010) Natural and remote sensing image segmentation using memetic computing. IEEE Comput Intell Mag:78–91. https://doi.org/10.1109/MCI.2010.936307

    Article  Google Scholar 

  106. Joshi A et al (2015) A novel methodology for brain tumor detection based on two stage segmentation of MRI images. International conference on advanced computing and communication systems (ICACCS). https://doi.org/10.1109/ICACCS.2015.7324127

  107. Kahali S et al (2017) 3D MRI brain image segmentation: a two-stage framework. CICBA 2017, Part II, CCIS 776, pp 323–335. https://doi.org/10.1007/978-981-10-6430-2_25

    Google Scholar 

  108. Kamarudin JAM et al (2017) A review of deep learning architectures and their application. AsiaSim 2017, Part II, CCIS 752, pp 83–94. https://doi.org/10.1007/978-981-10-6502-6_7

    Google Scholar 

  109. Kamiya A, Ovaska SJ, Roy R, Kobayashi S (2005) Fusion of soft computing and hard computing for large-scale plants: a general model. Appl Soft Comput 5(3):265–279. https://doi.org/10.1016/j.asoc.2004.08.005

    Article  Google Scholar 

  110. Kampffmeyer M et al (2016) Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. 2016 I.E. conference on computer vision and pattern recognition workshops, pp. 680–688. https://doi.org/10.1109/CVPRW.2016.90

  111. Karvonen JA et al (2004) Baltic Sea ice SAR segmentation and classification using modified pulse-coupled neural networks. IEEE Trans Geosci Remote Sens 42(7):1566–1574. https://doi.org/10.1109/TGRS.2004.828179

    Article  Google Scholar 

  112. Kateriya B, Tiwari R (2016) River water quality analysis and treatment using soft computing technique: a survey. 2016 I.E. international conference on computer communication and informatics (ICCCI), Coimbatore, INDIA, pp 1–6. https://doi.org/10.1109/ICCCI.2016.7479942

  113. Kaur A, Kaur P (2016) An integrated approach for diabetic retinopathy exudate segmentation by using genetic algorithm and switching median filter. 2016 I.E. international conference on image. Vis Comput, pp 119–123. https://doi.org/10.1109/ICIVC.2016.7571284

  114. Khan A, Jaffar MA (2015) Genetic algorithm and self organizing map based fuzzy hybrid intelligent method for color image segmentation. Appl Soft Comput 32:300–310. https://doi.org/10.1016/j.asoc.2015.03.029

    Article  Google Scholar 

  115. Khan A, Javid U, Arfan Jaffar M, Choi T-S (2014) Color image segmentation: a novel spatial fuzzy genetic algorithm. SIViP 8(7):1233–1243. https://doi.org/10.1007/s11760-012-0347-8

    Article  Google Scholar 

  116. Khan ZF et al (2017, 2017) Automated segmentation of lung images using textural echo state neural networks, IEEE international conference on informatics. Health Technol (ICIHT). https://doi.org/10.1109/ICIHT.2017.7899012

  117. Kim HJ et al (1998) MRF model based image segmentation using hierarchical distributed genetic algorithm. Electron Lett 34(25):2394–2395. https://doi.org/10.1049/el:19981674

    Article  Google Scholar 

  118. Kim Y, Moon T (2016) human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 13(1):8–12. https://doi.org/10.1109/LGRS.2015.2491329

    Article  Google Scholar 

  119. Kim EY, Park SH, Kim HJ (2000) A genetic algorithm-based segmentation of Markov random field modeled images. IEEE Signal Process Lett 7(11):301–303. https://doi.org/10.1109/97.873564

    Article  Google Scholar 

  120. Kim BK, Kang H-S, Park S-O (2017) Drone classification using convolutional neural networks with merged Doppler images. IEEE Geosci Remote Sens Lett 14(1):38–42. https://doi.org/10.1109/LGRS.2016.2624820

    Article  Google Scholar 

  121. Kiranyaz S, Ince T, Gabbouj M (2016) Real-time patient-specific ECG classification by 1D convolutional neural networks. IEEE Trans Biomed Eng 63(3):664–675. https://doi.org/10.1109/TBME.2015.2468589

    Article  Google Scholar 

  122. Ko M, Tiwari A, Mehnen J (2010) A review of soft computing applications in supply chain management. Appl Soft Comput 10(3):661–674. https://doi.org/10.1016/j.asoc.2009.09.004

    Article  Google Scholar 

  123. Kumar S, Pant M, Kumar M, Dutt A (2015) Colour image segmentation with histogram and homogeneity histogram difference using evolutionary algorithms. Int J Mach Learn Cybern:1–21. https://doi.org/10.1007/s13042-015-0360-7

    Article  Google Scholar 

  124. Kumar A, Kim J, Lyndon D, Fulham M, Feng D (2017) An Ensemble of Fine-Tuned Convolutional Neural Networks for medical image classification. IEEE J Biomed Health Inf 21(1):31–40. https://doi.org/10.1109/JBHI.2016.2635663

    Article  Google Scholar 

  125. Kuruvilla J, Sukumaran D, Sankar A, Joy SP (2016) A review on image processing and image segmentation. 2016 I.E. international conference on data mining and advanced computing (SAPIENCE), pp 198–203. https://doi.org/10.1109/SAPIENCE.2016.7684170

  126. Lee G-G et al (2017) Traffic light recognition using deep neural networks. 2017 I.E. international conf. on consumer electronics (ICCE), pp 277–278. https://doi.org/10.1109/ICCE.2017.7889317

  127. Lekadir K, Galimzianova A, Betriu A, del Mar Vila M, Igual L, Rubin DL, Fernandez E, Radeva P, Napel S (2017) A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J Biomed Health Inf 21(1):48–55. https://doi.org/10.1109/JBHI.2016.2631401

    Article  Google Scholar 

  128. Leung S-H, Wang S-L, Lau W-H (2004) lip image segmentation using fuzzy clustering incorporating an elliptic shape function. IEEE Trans Image Process 13(1):51–62. https://doi.org/10.1109/TIP.2003.818116

    Article  Google Scholar 

  129. Li G (2016) Magnetic resonance image segmentation algorithm based on fuzzy clustering. 2016 Eighth IEEE Int Conf Meas Technol Mechatron Autom, pp 379–382. https://doi.org/10.1109/ICMTMA.2016.97

  130. Li Y-l, Shen Y (2014) An automatic fuzzy c-means algorithm for image segmentation. Soft Comput 14:123–128. https://doi.org/10.1007/s00500-009-0442-0

    Article  Google Scholar 

  131. Li X, Zhang F, Ouyang X, Khan SU (2016) MapReduce-based fast fuzzy c-means algorithm for large-scale underwater image segmentation. Futur Gener Comput Syst 65:90–101. https://doi.org/10.1016/j.future.2016.03.004

    Article  Google Scholar 

  132. Li L, Sun L, Kang W, Guo J, Han C, Li S (2016) Fuzzy multilevel image thresholding based on modified discrete Grey wolf optimizer and local information aggregation. IEEE Access 4:6438–6450. https://doi.org/10.1109/ACCESS.2016.2613940

    Article  Google Scholar 

  133. Liang X et al Human parsing with contextualized convolutional neural network. IEEE Trans Pattern Anal Mach Intell 39(1):115–127. https://doi.org/10.1109/TPAMI.2016.2537339

    Article  Google Scholar 

  134. Liu Z et al (2015) Semantic image segmentation via deep parsing network. IEEE Int Conf Comput Vision (ICCV). https://doi.org/10.1109/ICCV.2015.162

  135. Liu F, Shen C, Lin G, Reid I (2016) Learning depth from single monocular images using deep convolutional neural fields. IEEE Trans Pattern Anal Mach Intell 38(10):2024–2039. https://doi.org/10.1109/TPAMI.2015.2505283

    Article  Google Scholar 

  136. Liu J, Liu Y, Ge Q (2017) Infrared image segmentation based on gray-scale adaptive fuzzy clustering algorithm. Multimed Tools Appl 76:11111–11125. https://doi.org/10.1007/s11042-016-3657-y

    Article  Google Scholar 

  137. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26. https://doi.org/10.1016/j.neucom.2016.12.038

    Article  Google Scholar 

  138. Ma H et al (2017) Fast prospective detection of contrast inflow in X-ray angiograms with convolutional neural network and recurrent neural network. MICCAI 2017, Part III, LNCS 10435, pp 453–461. https://doi.org/10.1007/978-3-319-66179-752

  139. Maggiori E, Tarabalka Y, Charpiat G, Alliez P (2017) Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans Geosci Remote Sens 55(2):645–657. https://doi.org/10.1109/TGRS.2016.2612821

    Article  Google Scholar 

  140. Maj P, Roy S (2015) Rough fuzzy clustering and multiresolution image analysis for text-graphics segmentation. Appl Soft Comput 30:705–721. https://doi.org/10.1016/j.asoc.2015.01.049

    Article  Google Scholar 

  141. Manikandan T, Bharathi N (2016) Lung cancer detection using fuzzy auto-seed cluster means morphological segmentation and SVM classifier. J Med Syst 40(7):1–9. https://doi.org/10.1007/s10916-016-0539-9

    Article  Google Scholar 

  142. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proc 8th Int'l Conf Comput Vision 2:416–423

    Google Scholar 

  143. Mattyus G et al (2016) HD maps: fine-grained road segmentation by parsing ground and aerial images. 2016 I.E. conference on computer vision and pattern recognition (CVPR). https://doi.org/10.1109/CVPR.2016.393

  144. Meftah B, Lezoray O, Benyettou A (2010) Segmentation and edge detection based on spiking neural network model. Neural Process Lett 32:131–146. https://doi.org/10.1007/s11063-010-9149-6

    Article  Google Scholar 

  145. Mesejo P, Ibanez O, Cordon O, Cagnoni S (2016) A survey on image segmentation using metaheuristic-based deformable models: state of the art and critical analysis. Appl Soft Comput 44:1–29. https://doi.org/10.1016/j.asoc.2016.03.004

    Article  Google Scholar 

  146. Minto L et al (2016) Scene Segmentation Driven by Deep Learning and Surface Fitting. Europ Confn Comput Vis (ECCV) 9915:118–132. https://doi.org/10.1007/978-3-319-49409-8_12

    Article  MathSciNet  Google Scholar 

  147. Mistry VH, Makwana RM (2016) Computationally efficient vanishing point detection algorithm based road segmentation in road images. 2016 I.E. international conference on advances in electronics. Communication and computer technology (ICAECCT)

  148. Mojumder JC et al (2017) The intelligent forecasting of the performances in PV/T collectors based on soft computing method. Renew Sust Energ Rev. https://doi.org/10.1016/j.rser.2016.11.225

    Article  Google Scholar 

  149. Mondal A, Ghosh S, Ghosh A Robust global and local fuzzy energy based active contour for image segmentation. Appl Soft Comput 47(C):191–215. https://doi.org/10.1016/jasoc201605.026

  150. Moniruzzaman M et al (2017) deep learning on underwater marine object detection: a survey. ACIVS 2017, LNCS 10617, pp 150–160. https://doi.org/10.1007/978-3-319-70353-4_13

    Chapter  Google Scholar 

  151. Muppidi M et al (2015) Image segmentation by multi-level thresholding using genetic algorithm with fuzzy entropy cost functions, International Conference on Image Processing Theory, Tools App (IPTA), pp. 143–148, https://doi.org/10.1109/IPTA.2015.7367114

  152. Mylonas SK, Stavrakoudis DG, Theocharis JB (2013) GeneSIS: a GA-based fuzzy segmentation algorithm for remote sensing images. Knowl-Based Syst 54:86–102. https://doi.org/10.1016/j.knosys.2013.07.018

    Article  Google Scholar 

  153. Mylonas SK, Stavrakoudis DG, Theocharis JB, Mastorocostas PA (2015) Classification of remotely sensed images using the GeneSIS fuzzy segmentation algorithm. IEEE Trans Geosci Remote Sens 53(10):5352–5376. https://doi.org/10.1109/TGRS.2015.2421640

    Article  Google Scholar 

  154. Mylonas SK, Stavrakoudis DG, Theocharis JB, Zalidis GC, Gitas IZ (2016) A local search-based GeneSIS algorithm for the segmentation and classification of remote-sensing images. IEEE J Sel Top Appl Earth Obs Remote Sens 9(4):1470–1492. https://doi.org/10.1109/JSTARS.2016.2518403

    Article  Google Scholar 

  155. Nagarajan G et al (2016) Hybrid Genetic Algorithm for Medical Image Feature Extraction and selection. Int Conf Comput Model Secur (CMS) 85:455–462. https://doi.org/10.1016/j.procs.2016.05.192

    Article  Google Scholar 

  156. Namburu A, Samay SK, Edara SR (2017) Soft fuzzy rough set-based MR brain image segmentation. Appl Soft Comput 54(C):456–466. https://doi.org/10.1016/j.asoc.2016.08.020

    Article  Google Scholar 

  157. Naz S, Majeed H, Irshad H (2010) Image segmentation using Fuzzy clustering: a survey. 2010 6th international conference on emerging technologies (ICET), pp 181–186. doi:10.1109/ICET.2010.5638492

  158. Nithila EE, Kumar SS (2016) Segmentation of lung nodule in CT data using active contour model and fuzzy C-mean clustering. Alexandria Eng J 55:2583–2588

    Article  Google Scholar 

  159. Nogueira RF, de Alencar Lotufo R, Machado RC (2016) Fingerprint liveness detection using convolutional neural networks. IEEE Trans Inf Forensics Secur 11(6):1206–1213. https://doi.org/10.1109/TIFS.2016.2520880

    Article  Google Scholar 

  160. Nugroho DPA, Riasetiawan M (2017) Road lane segmentation using deconvolutional neural network. SCDS 2017, CCIS 788, pp. 13–22. https://doi.org/10.1007/978-981-10-7242-0_2

    Google Scholar 

  161. Ortiz A, Górriz JM, Ramírez J, Salas-González D, Llamas-Elvira JM (2013) Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies. Appl Soft Comput 13:2668–2682. https://doi.org/10.1016/j.asoc.2012.11.020

    Article  Google Scholar 

  162. Pan J et al (2007) Crop and weed image recognition by morphological operations and ANN model. 2007 I.E. instrumentation & measurement technology conference IMTC, pp. 1-4. https://doi.org/10.1109/IMTC.2007.379081

  163. Papandreou G et al (2015) Weakly- and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: 2015 I.E. international conference on computer vision (ICCV). https://doi.org/10.1109/ICCV.2015.203

  164. Parvathi P, Rajeswari R (2016) A hybrid FCM-ALO based technique for image segmentation. 2016 I.E. international conference on advances in computer applications (ICACA), pp. 342–345. https://doi.org/10.1109/ICACA.2016.7887978

  165. Patra S, Gautam R, Singla A (2013) A novel context sensitive multilevel thresholding for image segmentation. Appl Soft Comput 23:122–127. https://doi.org/10.1016/j.asoc.2014.06.016

    Article  Google Scholar 

  166. Pednekar AS, Kakadiaris IA (2006) Image segmentation based on fuzzy connectedness using dynamic weights. IEEE Trans Image Process 15(6):1555–1562. https://doi.org/10.1109/TIP.2006.871165

    Article  Google Scholar 

  167. Pereira DC, Ramos RP, do Nascimento MZ (2014) Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm. Comput Methods Prog Biomed 114:88–101. https://doi.org/10.1016/j.cmpb.2014.01.014

    Article  Google Scholar 

  168. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251. https://doi.org/10.1109/TMI.2016.2538465

    Article  Google Scholar 

  169. Pereira S et al (2017) On hierarchical brain tumor segmentation in MRI using fully convolutional neural networks: a preliminary study. 2017 I.E. 5th Portuguese meeting on bioengineering (ENBENG), pp. 1–4. https://doi.org/10.1109/ENBENG.2017.7889452

  170. Pham DL, Prince JL (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18(9):737–752. https://doi.org/10.1109/42.802752

    Article  Google Scholar 

  171. Poria S, Cambria E, Bajpai R, Hussain A (2017) A review of affective computing: from unimodal analysis to multimodal fusion. Inf Fusion 37:98–125. https://doi.org/10.1016/j.inffus.2017.02.003

    Article  Google Scholar 

  172. Qi D, Chen H, Yu L, Zhao L, Qin J, Wang D, Mok VCT, Shi L, Heng PA (2016) Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging 35(5):1182–1195. https://doi.org/10.1109/TMI.2016.2528129

    Article  Google Scholar 

  173. Rajeev AA et al Improved segmentation technique for underwater images based on K-means and local adaptive thresholding. Inf Commun Technol Sustain Devel Lect Notes Netw Syst 10:443–450. https://doi.org/10.1007/978-981-10-3920-1_45

    Google Scholar 

  174. Rao BD, Goswami MM Performance Analysis of Supervised & Unsupervised Techniques for Brain Tumor Detection and Segmentation from MR Images. Int Conf Intell Syst Signal Process Advanc Intell Syst Comput 671:35–44. https://doi.org/10.1007/978-981-10-6977-2_4

    Chapter  Google Scholar 

  175. Rezaee K, Haddadnia J, Tashk A (2017) Optimized clinical segmentation of retinal blood vessels by using combination of adaptive filtering, fuzzy entropy and skeletonization. Appl Soft Comput 52:937–951. https://doi.org/10.1016/j.asoc.2016.09.033

    Article  Google Scholar 

  176. Rezaei Z, Selamat A, Taki A, Rahim MSM, Kadir MRA (2017) Automatic plaque segmentation based on hybrid fuzzy clustering and k nearest neighborhood using virtual histology intravascular ultrasound images. Appl Soft Comput 53:380–395. https://doi.org/10.1016/j.asoc.2016.12.048

    Article  Google Scholar 

  177. Riomoros M, Pajares GG et al (2010) Automatic image segmentation of greenness in crop fields. 2010 I.E. international conference of soft computing and pattern recogn, pp. 462–467. https://doi.org/10.1109/SOCPAR.2010.5685936

  178. Rizvi IA, Krishna Mohan B (2011) Object-based image analysis of high-resolution satellite images using modified cloud basis function neural network and probabilistic relaxation labeling process. IEEE Trans Geosci Remote Sens 49(12):4815–4820. https://doi.org/10.1109/TGRS.2011.2171695

    Article  Google Scholar 

  179. Roth HR et al (2015) DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. MICCAI 2015: medical image computing and computer-assisted intervention, pp, 556–564. https://doi.org/10.1007/978-3-319-24553-9_68

    Google Scholar 

  180. Roy K et al (2015) Multibiometric system using fuzzy level set, and genetic and evolutionary feature extraction. IET Biometrics 4(3):151–161. https://doi.org/10.1049/iet-bmt.2014.0064

    Article  Google Scholar 

  181. Sabzi S, Abbaspour-Gilandeh Y, Javadikia H (2017) The use of soft computing to classification of some weeds based on video processing. Appl Soft Comput 56:107–123. https://doi.org/10.1016/j.asoc.2017.03.006

    Article  Google Scholar 

  182. Saha S, Bandyopadhyay S (2010) Application of a multiseed-based clustering technique for automatic satellite image segmentation. IEEE Geosci Remote Sens Lett 7(2):306–308. https://doi.org/10.1109/LGRS.2009.2034033

    Article  Google Scholar 

  183. Saha R, Bajger M, Lee G (2016) Spatial shape constrained Fuzzy C-means (FCM) clustering for nucleus segmentation in pap smear images. 2016 I.E. international conference on digital image computing: techniques and applications (DICTA), pp. 1–8. https://doi.org/10.1109/DICTA.2016.7797086

  184. Saito S et al (2016) Real-time facial segmentation and performance capture from RGB input. European conference on computer vision (ECCV-2016)

  185. Saqui D et al (2016) Methodology for band selection of hyperspectral images using genetic algorithms and Gaussian maximum likelihood classifier. 2016 I.E. international conference on computational science and comput intell, pp. 733–738. https://doi.org/10.1109/CSCI.2016.0143

  186. Saridakis KM, Dentsoras AJ (2008) Soft computing in engineering design – a review. Adv Eng Inform 22:202–221. https://doi.org/10.1016/j.aei.2007.10.001

    Article  Google Scholar 

  187. Sarkara JP, Saha I, Maulik U (2016) Rough possibilistic type-2 fuzzy C-means clustering for MR brain image segmentation. Appl Soft Comput 46:527–536. https://doi.org/10.1016/j.asoc.2016.01.040

    Article  Google Scholar 

  188. Sebari I, He D-C (2013) Automatic fuzzy object-based analysis of VHSR images for urban objects extraction. ISPRS J Photogramm Remote Sens 79:171–184. https://doi.org/10.1016/j.isprsjprs.2013.02.006

    Article  Google Scholar 

  189. Sevo I, Avramovic A (2016) Convolutional neural network based automatic object detection on aerial images. IEEE Geosci Remote Sens Lett 13(5):740–744. https://doi.org/10.1109/LGRS.2016.2542358

    Article  Google Scholar 

  190. Shang R, Tian P, Jiao L, Stolkin R, Feng J, Hou B, Zhang X (2016) A spatial fuzzy clustering algorithm with kernel metric based on immune clone for SAR image segmentation. IEEE J Sel Topics Appl Earth Obs Remote Sens 9(4):1640–1652. https://doi.org/10.1109/JSTARS.2016.2516014

    Article  Google Scholar 

  191. Shen S, Sandham W, Granat M, Sterr A (2005) MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans Inf Technol Biomed 9(3):459–467. https://doi.org/10.1109/TITB.2005.847500

    Article  Google Scholar 

  192. Sheta A et al (2012) Genetic algorithms: a tool for image segmentation. 2012 I.E. International conference on multimedia computing and systems, pp. 84–90, 2012, . https://doi.org/10.1109/ICMCS.2012.6320144

  193. Shigeyoshi K et al (2015) Automatic segmentation of phalanges regions on MR images based on MSGVF snakes. IEEE 15th international conference on control, automation and systems (ICCAS 2015), pp. 1547–1550. https://doi.org/10.1109/ICCAS.2015.7364602

  194. Shrivastavaa S, Singh MP (2011) Performance evaluation of feed-forward neural network with soft computing techniques for hand written English alphabets. Appl Soft Comput 11:1156–1182. https://doi.org/10.1016/j.asoc.2010.02.015

    Article  Google Scholar 

  195. Simhachalam B, Ganesan G (2016) Performance comparison of fuzzy and non-fuzzy classification methods. Egypt Inf J 17:183–188. https://doi.org/10.1016/j.eij.2015.10.004

    Article  Google Scholar 

  196. Singh V, Mishra AK (2017) Detection of plant leaf diseases using image segmentation and soft computing techniques. Information Processing in Agriculture 4(1):41–49. https://doi.org/10.1016/j.inpa.2016.10.005

    Article  Google Scholar 

  197. Singh A, Singh KK (2017) Satellite image classification using genetic algorithm trained radial basis function neural network, application to the detection of flooded areas. J Vis Commun Image Represent 42:173–182. https://doi.org/10.1016/j.jvcir.2016.11.017

    Article  Google Scholar 

  198. Singh V, Gupta S, Saini S (2015) A methodological survey of image segmentation using soft computing techniques. 2015 I.E. international conference on advances in computer engineering and applications (ICACEA), pp. 419–422. https://doi.org/10.1109/ICACEA.2015.7164741

  199. Singha S, Bellerby TJ, Trieschmann O (2013) Satellite oil spill detection using artificial neural networks. IEEE J Sel Top Appl Earth Obs Remote Sens 6(6):2355–2363. https://doi.org/10.1109/JSTARS.2013.2251864

    Article  Google Scholar 

  200. Song A, Ciesielski V Texture segmentation by genetic programming 2008 by the Massachusetts Institute of Technology. Evol Comput 16(4):461–481. https://doi.org/10.1162/evco2008164.461

  201. Song T, Jamshidi MM, Lee RR, Huang M (2007) A modified probabilistic neural network for partial volume segmentation in brain MR image. IEEE Trans Neural Netw 18(5):1424–1432. https://doi.org/10.1109/TNN.2007.891635

    Article  Google Scholar 

  202. Steve L, Giles CL, Tsoi AC, Back AD (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113. https://doi.org/10.1109/72.554195

    Article  Google Scholar 

  203. Sulaiman SN, Isa NAM (2010) Adaptive fuzzy-K-means clustering algorithm for image segmentation. IEEE Trans Consum Electron 56(4):2661–2668. https://doi.org/10.1109/TCE.2010.5681154

    Article  Google Scholar 

  204. Suomi V et al (2016) Nonlinear 3-D simulation of high-intensity focused ultrasound therapy in the kidney. Engineering in Medicine and Biology Society (EMBC), 2016 I.E. 38th annual international conference, pp. 5648–5651. https://doi.org/10.1109/EMBC.2016.7592008

  205. Swietojanski P et al (2014) Convolutional neural networks for distant speech recognition. IEEE Signal Process Lett 21(9):1120–1124. https://doi.org/10.1109/LSP.2014.2325781

    Article  Google Scholar 

  206. Takeki A et al (2016) Detection of small birds in large images by combining a deep detector with semantic segmentation. 2016 I.E. international conference on image processing (ICIP), pp 3977–3981. https://doi.org/10.1109/ICIP.2016.7533106

  207. Tan KS, Lim WH, Isa NAM (2013) Novel initialization scheme for fuzzy C-means algorithm on color image segmentation. Appl Soft Comput 13:1832–1852. https://doi.org/10.1016/j.asoc.2012.12.022

    Article  Google Scholar 

  208. Tan KS, Isa NAM, Lim WH (2013) Color image segmentation using adaptive unsupervised clustering approach. Appl Soft Comput 13:2017–2036. https://doi.org/10.1016/j.asoc.2012.11.038

    Article  Google Scholar 

  209. Tang Y, Wu X (2017) Scene text detection and segmentation based on cascaded convolution neural networks. IEEE Trans Image Process 26(3):1509–1520. https://doi.org/10.1109/TIP.2017.2656474

    Article  Google Scholar 

  210. Tang J, Deng C, Huang G-B, Zhao B (2015) Compressed-domain ship detection on Spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans Geosci Remote Sens 53(3):1174–1185. https://doi.org/10.1109/TGRS.2014.2335751

    Article  Google Scholar 

  211. Taravat A, Latini D, del Frate F (2014) Fully automatic dark-spot Detection from SAR imagery with the combination of non adaptive Weibull multiplicative model and pulse-coupled neural networks. IEEE Trans Geosci Remote Sens 52(5):2427–2435. https://doi.org/10.1109/TGRS.2013.2261076

    Article  Google Scholar 

  212. Tewari P, Surbhi P (2016) Evaluation of some recent image segmentation method’s. 2016 international conference on computing for sustainable global development (INDIACom), pp. 3741–3747

  213. Tian GJ et al (2011) Hybrid genetic and Variational expectation-maximization algorithm for Gaussian-mixture-model-based brain MR image segmentation. IEEE Trans Inf Technol Biomed 15(3):373–380. https://doi.org/10.1109/TITB.2011.2106135

    Article  Google Scholar 

  214. Tokmakov P et al (2016) Weakly-supervised semantic segmentation using motion cues. Eur Conf Comput Vision (ECCV) 9908:388–404. https://doi.org/10.1007/978-3-319-46493-0_24

    Article  Google Scholar 

  215. Trujillo MCR, Alarcón TE, Dalmau OS, Ojeda AZ (2017) Segmentation of carbon nanotube images through an artificial neural network. Soft Comput 21:611–625. https://doi.org/10.1007/s00500-016-2426-1

    Article  Google Scholar 

  216. Uy ACP et al (2016) Automated traffic violation apprehension system using genetic algorithm and artificial neural network. 2016 I.E. region 10 conference (TENCON) - Proceedings of the international conference, pp 2094–2099. https://doi.org/10.1109/TENCON.2016.7848395

  217. van Grinsven MJJP et al (2016) Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging 35(5):1273–1284. https://doi.org/10.1109/TMI.2016.2526689

    Article  Google Scholar 

  218. Vapenik R (2016) Human face detection in still image using Multilayer perceptron solution based on Neuroph framework. 2016 I.E. international conference on emerging elearning technologies and applications (ICETA), pp. 365–369. https://doi.org/10.1109/ICETA.2016.7802049

  219. Verma H, Agrawal RK, Sharan A (2016) An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation. Appl Soft Comput 46:543–557. https://doi.org/10.1016/j.asoc.2015.12.022

    Article  Google Scholar 

  220. Vishnuvarthanan G, Rajasekaran MP, Subbaraj P, Vishnuvarthanan A (2016) An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images. Appl Soft Comput 38:190–212. https://doi.org/10.1016/j.asoc.2015.09.016

    Article  Google Scholar 

  221. Volpi M, Tuia D (2017) Dense semantic labeling of subdecimeter resolution images with convolutional. IEEE Trans Geosci Remote Sens 55(2):881–893. https://doi.org/10.1109/TGRS.2016.2616585

    Article  Google Scholar 

  222. Vorontsov E, Tang A, Roy D, Pal CJ, Kadoury S (2017) Metastatic liver tumour segmentation with a neural network-guided 3D deformable model. Med Biol Eng Comput 55:127–139. https://doi.org/10.1007/s11517-016-1495-8

    Article  Google Scholar 

  223. Waldchen J, Mader P (2017) Plant species identification using computer vision techniques: a systematic literature review. Arch Comput Methods Eng 25:507–543. https://doi.org/10.1007/s11831-016-9206-z

    Article  MathSciNet  MATH  Google Scholar 

  224. Wang F, Wang F (2014) Void detection in TSVs with X-ray image multithreshold segmentation and artificial neural networks. IEEE Trans Compon Packag Manuf Technol 4(7):1245–1250. https://doi.org/10.1109/TCPMT.2014.2322907

    Article  Google Scholar 

  225. Wang C et al (2016) On semantic image segmentation using deep convolutional neural network with shortcuts and easy class extension. 2016 Sixth ieee international conference on image processing theory, tools and applications (IPTA), pp. 1–6. https://doi.org/10.1109/IPTA.2016.7821005

  226. Wang L, Andrea Scott K, Xu L, Clausi DA (2016) Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: a case study. IEEE Trans Geosci Remote Sens 54(8):4524–4533. https://doi.org/10.1109/TGRS.2016.2543660

    Article  Google Scholar 

  227. Wang P, Li W, Gao Z, Zhang J, Tang C, Ogunbona PO (2016) Action recognition from depth maps using deep convolutional neural networks. IEEE Trans Hum-Mach Syst 46(4):498–509. https://doi.org/10.1109/THMS.2015.2504550

    Article  Google Scholar 

  228. Wei H, Tang X-s (2015) A genetic-algorithm-based explicit description of object contour and its ability to facilitate recognition. IEEE Trans Cybernet 45(11):2558–2571. https://doi.org/10.1109/TCYB.2014.2376939

    Article  Google Scholar 

  229. Wu D, Pigou L, Kindermans PJ, Le NDH, Shao L, Dambre J, Odobez JM (2016) Deep dynamic neural networks for multimodal gesture segmentation and recognition. IEEE Trans Pattern Anal Mach Intell 38(8):1583–1597. https://doi.org/10.1109/TPAMI.2016.2537340

    Article  Google Scholar 

  230. Xian-cheng ZHOU et al (2008) New two-dimensional fuzzy C-means clustering algorithm for image segmentation. J Cent South Univ 15:882–887. https://doi.org/10.1007/s11771-008-0161-1

    Article  Google Scholar 

  231. Xie F, Bovik AC (2013) Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm. Pattern Recogn 46:1012–1019. https://doi.org/10.1016/j.patcog.2012.08.012

    Article  Google Scholar 

  232. Xu M, Guo M, Shang L, Jia X (2016) Multi-value image segmentation based on FCM algorithm and graph cut theory. 2016 I.E. international conference on Fuzzy systems (FUZZ), pp. 1333–1340. https://doi.org/10.1109/FUZZ-IEEE.2016.7737844

  233. Xu Y et al (2017) Gland instance segmentation using deep multichannel neural networks. IEEE Trans Biomed Eng 99. https://doi.org/10.1109/TBME.2017.2686418

  234. Yamamoto Y et al (2016) An efficient classification method for knee MR image segmentation. 2016 12th international conference on signal-image technology & internet-based systems, pp. 36–45. 10.1109/SITIS.2016.15

  235. Yan C et al (2015) Driving posture recognition by convolutional neural networks. IET Comput Vis 10(2):103–114. https://doi.org/10.1049/iet-cvi.2015.0175

    Article  Google Scholar 

  236. Yardimci A (2009) Soft computing in medicine. Appl Soft Comput 9:1029–1043. https://doi.org/10.1016/j.asoc.2009.02.003

    Article  Google Scholar 

  237. Yeh J-Y, Fu JC (2008) A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI. Expert Syst Appl 34:1285–1295. https://doi.org/10.1016/j.eswa.2006.12.012

    Article  Google Scholar 

  238. Yin S, Qian Y, Gong M (2017) Unsupervised hierarchical image segmentation through fuzzy entropy maximization. Pattern Recogn 68:245–269. https://doi.org/10.1016/j.patcog.2017.03.012

    Article  Google Scholar 

  239. Yoshimura M, Oe S (2003) Evolutionary segmentation of texture image using genetic algorithms towards automatic decision of optimum number of segmentation areas. Pattern Recogn 32:2041–2054. https://doi.org/10.1016/S0031-3203(99)00004-7

    Article  Google Scholar 

  240. Yu Z, Wang H, Xu F, Jin YQ (2016) Polarimetric SAR image classification using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 13(12):1935–1939. https://doi.org/10.1109/LGRS.2016.2618840

    Article  Google Scholar 

  241. Yuan Y et al (2017) Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance. IEEE Trans Med Imaging 99. https://doi.org/10.1109/TMI.2017.2695227

    Article  Google Scholar 

  242. Zangeneh D, Yazdi M (2016) Automatic segmentation of multiple sclerosis lesions in brain MRI using constrained GMM and genetic algorithm. 2016 24th IEEE Iranian conference on electrical engineering (ICEE), pp. 832–837. 10.1109/Iranian CEE. 2016.7585635

  243. Zhang M, Hall LO, Goldgof DB (2002) A generic knowledge-guided image segmentation and labeling system using fuzzy clustering algorithms. IEEE Trans Syst Man Cybern—Part B: Cybern 32(5):571–582. https://doi.org/10.1109/TSMCB.2002.1033177

    Article  Google Scholar 

  244. Zhang F, Du B, Zhang L, Xu M (2016) Weakly supervised learning based on coupled convolutional neural networks for aircraft detection. IEEE Trans Geosci Remote Sens 54(9):5553–5563. https://doi.org/10.1109/TGRS.2016.2569141

    Article  Google Scholar 

  245. Zhang X, Wang G, Su Q, Guo Q, Zhang C, Chen B (2017) An improved fuzzy algorithm for image segmentation using peak detection, spatial information and reallocation. Soft Comput 21:2165–2173. https://doi.org/10.1007/s00500-015-1920-1

    Article  Google Scholar 

  246. Zhang X, Sun Y, Wang G, Guo Q, Zhang C, Chen B (2017) Improved fuzzy clustering algorithm with non-local information for image segmentation. Multimed Tools Appl 76:7869–7895. https://doi.org/10.1007/s11042-016-3399-x

    Article  Google Scholar 

  247. Zhao F, Liu H, Fan J (2015) A multi objective spatial fuzzy clustering algorithm for image segmentation. Appl Soft Comput 30:48–57. https://doi.org/10.1016/j.asoc.2015.01.039

    Article  Google Scholar 

  248. Zhao Q-h, Li X-l, Yu L, Zhao X-m (2017) A fuzzy clustering image segmentation algorithm based on hidden Markov random field models and Voronoi tessellation. Pattern Recogn Lett 85:49–55. https://doi.org/10.1016/j.patrec.2016.11.019

    Article  Google Scholar 

  249. Zheng G et al (2017) ECG based identification by deep learning. CCBR 2017, LNCS 10568, pp, 503–510. https://doi.org/10.1007/978-3-319-69923-3_54

    Chapter  Google Scholar 

  250. Zhou H, Schaefer G, Sadka AH, Emre Celebi M (2009) Anisotropic mean shift based fuzzy C-means segmentation of dermoscopy images. IEEE J Sel Topics Signal Process 3(1):26–34. https://doi.org/10.1109/JSTSP.2008.2010631

    Article  Google Scholar 

  251. Zhu W (2016) Segmentation algorithm for MRI images using global entropy minimization. IEEE international conference on signal and image processing (ICSIP), pp. 1–5. https://doi.org/10.1109/SIPROCESS.2016.7888212

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Singh Chouhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouhan, S.S., Kaul, A. & Singh, U.P. Soft computing approaches for image segmentation: a survey. Multimed Tools Appl 77, 28483–28537 (2018). https://doi.org/10.1007/s11042-018-6005-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6005-6

Keywords

Navigation