Skip to main content
Log in

Time-dependent constitutive modeling of drive belts – I. The effect of geometry and number of loading cycles

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This paper presents constitutive modeling of dynamically loaded elastomeric products such as power transmission belts. During the normal operation of the belts certain segments of the belt structure are loaded with a tooth-like periodic (cyclic) loading. When the time-dependent properties of the elastomeric material “match” the time-scale of the dynamic loading a strain accumulation process occurs. The critical angular velocity is proportional to the ratio of the belt length to the common diameters of the pulleys. The magnitude of the strain accumulated in each loading cycle decreases with an increase in belt length. For a given belt geometry the critical angular velocity increases with the number of loading cycles. At the same time the magnitude of the accumulated strain decreases non-linearly as the number of loading cycles increases. However if the belt operates at or in the close vicinity of its critical angular velocity it will almost certainly fail!

The critical angular velocity depends on the material retardation time (location in the frequency spectrum), while the magnitude of the accumulated strain is dictated by the strength of the corresponding discrete spectrum lines. Thus, the mechanical spectrum of the elastomeric material from which the belt is constructed is the most important material function for predicting the durability of drive belts and similarly dynamically loaded elastomeric products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andre, N., Cailletaud, G., Piques, R.: Haigh diagram for fatigue crack initiation prediction of natural rubber components. Kautschuk Gummi Kunststoffe 52(2), 120–123 (1999)

    Google Scholar 

  • Childs, T.H.C., Dalgarno, K.W., Hojjati, M.H., Tutt, M.J., Day, A.J.: The meshing of timing belt teeth in pulley grooves. Proc. Inst. Mech. Eng. Part D-J. Automobile Eng. 211(3), 205–218 (1997)

    Article  Google Scholar 

  • Dalgarno, K.W., Childs, T.H.C., Day, A.J., Hojjati, M.H.R., Moore, B., Yu, D.Q.: Mechanical properties of elastomer compounds in synchronous and V-ribbed belts. Kautschuk Gummi Kunststoffe 50(4), 299–303 (1997)

    Google Scholar 

  • Dalgarno, K.W., Day, A.J., Childs, T.H.C., Moore, R.B.: Stiffness loss of synchronous belts. Compos. Part B Eng. 29(3), 217–222 (1998)

    Article  Google Scholar 

  • Dalgarno, K.W.: Power transmission belt performance and failure. Rubber Chem. Technol. 71(3), 619–636 (1998)

    Google Scholar 

  • Emri, I., Prodan, T.: A measuring system for bulk and shear characterization of polymers. Exp. Mech. 46(4), 429–439 (2006)

    Article  Google Scholar 

  • Friedrich, K.: Mesoscopic aspects of polymer composites: processing, structure and properties. J. Mater. Sci. 33(23), 5535–5556 (1998)

    Article  Google Scholar 

  • Gurvich, M.R., Andonian, A.T., Kim, S.L.: Hysteretic energy loss in cord/rubber composites under 2-D cyclic loading. Rubber Chem. Technol. 74(5), 871–882 (2001)

    Google Scholar 

  • Huang, Y.S., Yeoh, O.H.: Crack initiation and propagation in model cord-rubber composites. Rubber Chem. Technol. 62(4), 709–731 (1989)

    Google Scholar 

  • Iizuka, H., Gerbert, G., Childs, T.H.C.: Fatigue damage prediction in synchronous belts. J. Mech. Des. 121(2), 280–288 (1999)

    Google Scholar 

  • Iizuka, H., Watanabe, K., Mashimo, S.: Observations of Fatigue Failure in Synchronous Belts. Fatigue Fract. Eng. Mater. Struct. 17(7), 783–790 (1994)

    Google Scholar 

  • Kido, R., Kusano, T., Fujii, T.: A New Approach for Analyzing Load Distribution of Toothed Belts at Steady States using FEM. SAE Technical Paper Series 940690, 23–32 (1994)

    Google Scholar 

  • Koyama, T., Kagotani, M., Shibata, T., Sato, S., Hoshiro, T.: A study on strength of toothed belt. 5. Effect of pitch difference on fatigue-strength of toothed belt. Bull. JSME Japan Soc. Mech. Eng. 23(181), 1240–1244 (1980)

    Google Scholar 

  • Koyama, T., Kagotani, M., Shibata, T., Sato, S., Hoshiro, T.: A study on strength of toothed belt. 3. Fatigue-strength and features of fracture. Bull. JSME Japan Soc. Mech. Eng. 22(169), 988–993 (1979)

    Google Scholar 

  • Kralj, A., Prodan, T., Emri, I.: An apparatus for measuring the effect of pressure on the time-dependent properties of polymers. J. Rheol. (N.Y. N.Y.) 45(4), 929–943 (2001)

    ADS  Google Scholar 

  • Ku, B.H., Liu, D.S., Lee, B.L.: Fatigue of cord-rubber composites: III. Minimum stress effect. Rubber Chem. Technol. 71(5), 889–905 (1998)

    Google Scholar 

  • Lee, B.L., Ku, B.H., Liu, D.S., Hippo, P.K.: Fatigue of cord-rubber composites: II. Strain-based failure criteria. Rubber Chem. Technol. 71(5), 866–888 (1998)

    Google Scholar 

  • Lee, B.L., Liu, D.S., Chawla, M., Ulrich, P.C.: Fatigue of Cord-Rubber Composites. Rubber Chem. Technol. 67(5), 761–774 (1994)

    Google Scholar 

  • Legorju-jago, K., Bathias, C.: Fatigue initiation and propagation in natural and synthetic rubbers. Int. J. Fatigue 24(2–4), 85–92 (2002)

    Article  Google Scholar 

  • Mars, W.V., Fatemi, A.: Fatigue crack nucleation and growth in filled natural rubber. Fatigue Fract. Eng. Mater. Struct. 26(9), 779–789 (2003)

    Article  Google Scholar 

  • Pidaparti, R.M.V., Kakarla, V.: Fracture analysis of delamination failure in angle-ply elastomer composites. Polym. Polym. Compos. 6(7), 439–445 (1998)

    Google Scholar 

  • Pidaparti, R.M.V., May, A.W.: Micromechanical analysis of fatigue cracks in cord-rubber composites. Compos. Struct. 54(4), 459–465 (2001a)

    Article  Google Scholar 

  • Pidaparti, R.M.V., May, A.W.: Stress analysis of failures in cord-rubber composites. Polym. Polym. Compos. 9(1), 15–23 (2001b)

    Google Scholar 

  • Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction. Springer-Verlag, Berlin, Heidelberg (1989)

    MATH  Google Scholar 

  • Uchida, T., Yamaji, Y., Hanada, N.: Analysis of the Load on Each Tooth of a 4-Cycle Gasoline-Engine Cam Pulley. JSME Int. J. Ser. C Dyn. Control Robot. Des. Manuf. 36(4), 530–536 (1993)

    Google Scholar 

  • Zhao, J., Ghebremeskel, G.N.: A review of some of the factors affecting fracture and fatigue in SBR and BR vulcanizates. Rubber Chem. Technol. 74(3), 409–427 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Emri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emri, I., Kramar, J., Hribar, A. et al. Time-dependent constitutive modeling of drive belts – I. The effect of geometry and number of loading cycles. Mech Time-Depend Mater 10, 245–262 (2006). https://doi.org/10.1007/s11043-006-9021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-006-9021-2

Keywords

Navigation