Skip to main content
Log in

A fractional derivative approach to full creep regions in salt rock

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Based on the definition of the constant-viscosity Abel dashpot, a new creep element, referred to as the variable-viscosity Abel dashpot, is proposed to characterize damage growth in salt rock samples during creep tests. Ultrasonic testing is employed to determine a formula of the variable viscosity coefficient, indicating that the change of the variable viscosity coefficient with the time meets a negative exponent law. In addition, by replacing the Newtonian dashpot in the classical Nishihara model with the variable-viscosity Abel dashpot, a damage-mechanism-based creep constitutive model is proposed on the basis of time-based fractional derivative. The analytic solution for the fractional-derivative creep constitutive model is presented. The parameters of the fractional derivative creep model are determined by the Levenberg–Marquardt method on the basis of the experimental results of creep tests on salt rock. Furthermore, a sensitivity study is carried out, showing the effects of stress level, fractional derivative order and viscosity coefficient exponent on creep strain of salt rock. It is indicated that the fractional derivative creep model proposed in the paper provides a precise description of full creep regions in salt rock, i.e., the transient creep region (the primary region), the steady-state creep region (the secondary region) and the accelerated creep region (the tertiary region).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adolfsson, K., Enelund, M., Olsson, P.: On the fractional order model of viscoelasticity. Mech. Time-Depend. Mater. 9, 15–34 (2005)

    Article  Google Scholar 

  • Bagley, R.L., Torvik, P.J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21, 741–748 (1983)

    Article  MATH  Google Scholar 

  • Bagley, R.L., Torvik, P.J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23, 918–925 (1985)

    Article  MATH  Google Scholar 

  • Barpi, F., Valente, S.: A fractional order rate approach for modeling concrete structures subjected to creep and fracture. Int. J. Solids Struct. 41, 2607–2621 (2004)

    Article  MATH  Google Scholar 

  • Bazant, Z.P., Xi, Y.: Drying creep of concrete: constitutive model and new experiments separating its mechanism. Mater. Struct. 27, 3–14 (1994)

    Article  Google Scholar 

  • Carter, N.L., Hansen, F.D.: Creep of rock salt. Tectonophysics 92, 275–333 (1983)

    Article  Google Scholar 

  • Carter, N.L., Horseman, S.T., Russell, J.E., Handin, J.: Rheology of salt rock. J. Struct. Geol. 15, 1257–1272 (1993)

    Article  Google Scholar 

  • Chan, K.S., Bodner, S.R., Fossum, A.F., Munson, D.E.: A damage mechanics treatment of creep failure in rock salt. Int. J. Damage Mech. 6, 121–152 (1997)

    Article  Google Scholar 

  • Cristescu, N.D.: A general constitutive equation for transient and stationary creep of rock salt. Int. J. Rock Mech. Min. Sci. 30, 125–140 (1993)

    Article  Google Scholar 

  • Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2011)

    Book  Google Scholar 

  • Homand-Etienne, F., Houpert, R.: Thermally induced microcracking in granites: characterization and analysis. Int. J. Rock Mech. Min. Sci. 26, 125–134 (1989)

    Article  Google Scholar 

  • Hou, Z.: Mechanical and hydraulic behaviour of salt in the excavation disturbed zone around underground facilities. Int. J. Rock Mech. Min. Sci. 40, 725–738 (2003)

    Article  Google Scholar 

  • Jin, J., Cristescu, N.D.: An elastic/viscoplastic model for transient creep of rock salt. Int. J. Plast. 14, 85–107 (1998)

    Article  MATH  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  • King, M.S.: Creep in model pillars of Saskatchewan potash. Int. J. Rock Mech. Min. Sci. 10, 363–371 (1973)

    Article  Google Scholar 

  • Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Koeller, R.C.: Toward an equation of state for solid materials with memory by use of the half-order derivative. Acta Mech. 191, 125–133 (2007)

    Article  MATH  Google Scholar 

  • Koeller, R.C.: A theory relating creep and relaxation for linear materials with memory. J. Appl. Mech. 77, 1–9 (2010)

    Article  Google Scholar 

  • Krishnan, B., Jitendra, S.V., Raghu, V.P.: Creep damage characterization using a low amplitude nonlinear ultrasonic technique. Mater. Charact. 62, 275–286 (2011)

    Article  Google Scholar 

  • Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  • Metzler, R., Nonnenmacher, T.F.: Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials. Int. J. Plast. 19, 941–959 (2003)

    Article  MATH  Google Scholar 

  • Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  • Rogers, L.: Operators and fractional derivatives for viscoelastic constitutive equations. J. Rheol. 27, 351–372 (1983)

    Article  MATH  Google Scholar 

  • Senseny, P.E., Hansen, F.D., Russell, J.E., Carter, N.L., Handin, J.: Mechanical behavior of rock salt: phenomenology and micromechanisms. Int. J. Rock Mech. Min. Sci. 29, 363–378 (1992)

    Article  Google Scholar 

  • Scott Blair, G.W.: The role of psychophysics in rheology. J. Colloid Sci. 2, 21–32 (1947)

    Article  Google Scholar 

  • Tan, T.K., Kang, W.F.: Locked in stresses, creep and dilatancy of rocks constitutive equation. Rock Mech. Rock Eng. 13, 5–22 (1980)

    Google Scholar 

  • Tang, S., Green, M.S., Liu, W.K.: Two-scale mechanism-based theory of nonlinear viscoelasticity. J. Mech. Phys. Solids 60, 199–226 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Urai, J.L., Spiers, C.J., Hendrik, H.J., Zwart, H.J., Lister, G.S.: Weakening of rock-salt by water during long-term creep. Nature 324, 554–557 (1986)

    Article  Google Scholar 

  • Welch, S.W.J., Rorrer, R.A.L., Duren, J.R.G.: Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech. Time-Depend. Mater. 3, 279–303 (1999)

    Article  Google Scholar 

  • Yang, C.H., Daemen, J.J.K., Yin, J.H.: Experimental investigation of creep behavior of salt rock. Int. J. Rock Mech. Min. Sci. 36, 233–242 (1999)

    Article  Google Scholar 

  • Zhou, H.W., Wang, C.P., Duan, Z.Q., Han, B.B.: Time-dependent constitutive model of rock salt based on Caputo fractional derivative. In: Hou, Z.M., Xie, H., Yoon, J.S. (eds.) Underground Storage of CO2 and Energy, pp. 161–165. CRC Press, Leiden (2010)

    Chapter  Google Scholar 

  • Zhou, H.W., Wang, C.P., Han, B.B., Duan, Z.Q.: A creep constitutive model for salt rock based on fractional derivatives. Int. J. Rock Mech. Min. Sci. 48, 116–121 (2011)

    Article  Google Scholar 

  • Zhou, H.W., Wang, C.P., Duan, Z.Q., Zhang, M., Liu, J.F.: Time-based fractional derivative approach to creep constitutive model of salt rock. Sci. China Ser. G, Phys. Mech. Astron. 42, 310–318 (2012) (in Chinese)

    Article  Google Scholar 

Download references

Acknowledgements

The present work is supported by the National Natural Science Foundation of China (11172318, 51120145001), the 973 Program (2009CB724602) and the Program of International S & T Cooperation, MOST (2010DFA64560). The financial supports are gratefully acknowledged. Special thanks are due to Ms. H.Y. Bian for her help in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. W. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H.W., Wang, C.P., Mishnaevsky, L. et al. A fractional derivative approach to full creep regions in salt rock. Mech Time-Depend Mater 17, 413–425 (2013). https://doi.org/10.1007/s11043-012-9193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-012-9193-x

Keywords

Navigation