Skip to main content
Log in

Applicability condition of time–temperature superposition principle (TTSP) to a multi-phase system

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The applicability condition of the time–temperature superposition principle (TTSP) to a multi-phase system is analytically discussed assuming a mixture law. It was concluded that the TTSP does not hold for a multi-phase system in general but does hold for a multi-component system in which some components have the same temperature dependence and the others have no temperature dependence. On the basis of the results, the application of the TTSP to plant materials such as wood and bamboo was examined using a mixture law and a stretched-exponential function having a characteristic relaxation time τ 0 and a stretching parameter β. Wood can be treated as a multi-phase system consisting of a framework (f) and matrix (m). In this case, it was expected that the TTSP holds for the matrix in the shorter time region tτ 0f under T<T gf , while the TTSP holds for the framework in the longer time region tτ 0m under T>T gm , where t and T g is a measurement time and the glass transition temperature, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akinay, A.E., Brostow, W., Castano, V.M., Maksimov, R., Olszynski, P.: Time-temperature correspondence prediction of stress relaxation of polymeric materials from a minimum of data. Polymer 43, 3593–3600 (2002)

    Article  Google Scholar 

  • Aoyagi, S., Nakano, T.: Effects of longitudinal and radial position on creep for bamboo. Zairyo 58, 57–61 (2009) (in Japanese)

    Article  Google Scholar 

  • Armstrong, L.D., Christensen, G.N.: Influence of moisture changes on deformation of wood under stress. Nature 191(4791), 869–870 (1961). August 26

    Article  Google Scholar 

  • Back, E.L., Salmén, L.: Glass transitions of wood components hold implications for molding and pulping processes. Tappi J. 65, 107–110 (1982)

    Google Scholar 

  • Barbero, E.J., Ford, K.J.: Equivalent time temperature model for physical aging and temperature effects on polymer creep and relaxation. J. Eng. Mater. Technol. 126, 413–419 (2004)

    Article  Google Scholar 

  • Barbero, E.J., Julius, M.J.: Time–temperature–age viscoelastic behavior of commercial polymer blends and felt filled polymers. Mech. Adv. Mat. Struct. 11, 287–300 (2004)

    Article  Google Scholar 

  • Bond, B.H., Loferski, J., Tissaoui, J., Holzer, S.: Development of tension and compression creep models for wood using the time–temperature superposition principle. For. Prod. J. 47, 97–103 (1997)

    Google Scholar 

  • Brostow, W., D’Souza, N.A.: Creep and stress relaxation in alongitudinal polymer liquid crystal: prediction of the temperature shift factor. J. Chem. Phys. 110, 9706–9712 (1999)

    Article  Google Scholar 

  • Bueche, F.: Derivation of the WLF equation for the mobility of molecules in molten glasses. J. Chem. Phys. 24, 418–419 (1956)

    Article  Google Scholar 

  • Dlouhá, J., Clair, B., Arnould, O., Horácek, P., Gril, J.: On the time–temperature equivalency in green wood: characterization of viscoelastic properties in longitudinal direction. Holzforschung 63, 327–333 (2009)

    Article  Google Scholar 

  • Faucher, J.A.: Viscoelastic behavior of polyethylene and polypropylene. Trans. Soc. Rheol. 3, 81–93 (1959)

    Article  Google Scholar 

  • Ferry, J.D.: Viscoelastic Properties of Polymers, 3rd edn., pp. 304–315. Willey, New York (1980)

    Google Scholar 

  • Fesko, D.G., Tschoegl, N.W.: Time–temperature superposition in thermorheologically complex materials. J. Polym. Sci. 35, 51–69 (1971)

    Google Scholar 

  • Gibson, E.J.: Creep of wood, role of water and effect of a changing moisture content. Nature 206(4980), 213–215 (1965). April 10

    Article  Google Scholar 

  • Gibson, L.J., Ashby, M.F.: Cellular Solid, 2nd edn., pp. 93–174. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  • Goring, D.A.I.: Thermal softening of lignin, hemicellulose and cellulose. Pulp Pap. Mag. Can. 64, T517–T527 (1963)

    Google Scholar 

  • Grossman, P.U.A.: Requirements of a model that exhibits mechano-sorptive behaviour. Wood Sci. Technol. 10, 163–168 (1976)

    Article  Google Scholar 

  • Irvine, G.M.: The glass transitions of lignin and its relevance to thermomechanical pulping. CSIRO Division of chemical technology research review, 33–43 (1980)

  • Irvine, G.M.: The glass transitions of lignin and hemicellulose and their measurement by differential thermal. Tappi J. 67, 33–43 (1984)

    Google Scholar 

  • Kanzawa, E., Aoyagi, S., Nakano, T.: Vascular bundle shape in cross-section and relaxation properties of moso bamboo (Phyllostachys pubescens). Mater. Sci. Eng. C 31, 1050–1054 (2011)

    Article  Google Scholar 

  • Kaplan, D., Tschoegl, N.W.: Time-temperature superposition in two-phase polyblends. Polym. Eng. Sci. 14, 43–49 (1974)

    Article  Google Scholar 

  • Laborie, M.-P.G., Salmén, L., Frazier, C.E.: Cooperativity analysis of the in situ lignin glass transition. Holzforschung 58, 129–133 (2004)

    Article  Google Scholar 

  • Lindsey, C.P., Patterson, G.D.: Detailed comparison of the Williams–Watts and Cole–Davidson functions. J. Chem. Phys. 73, 3348–3357 (1980)

    Article  Google Scholar 

  • Liu, J., Cao, D., Zhang, L., Wang, W.: Time-temperature and time–concentration superposition of nanofilled elastmers: a molecular dynamics study. Macromolecules 42, 2831–2842 (2009)

    Article  Google Scholar 

  • Macaúbas, P.H.P., Demarquette, N.R.: Time–temperature superposition principle applicability for blends formed of immiscible polymers. Polym. Eng. Sci. 42, 1509–1519 (2002)

    Article  Google Scholar 

  • Nagamatsu, K., Yoshitomi, T.: On the viscoelastic properties of crystalline polymers: II polytrifluorochloroethylene. J. Colloid Sci. 14, 377–384 (1959)

    Article  Google Scholar 

  • Nakada, M., Miyano, Y., Cai, H., Kasamori, M.: Prediction of long-term viscoelastic behavior of amorphous resin based on the time–temperature superposition principle. Mech. Time-Depend. Mater. (2011). doi:10.1007/s11043-011-9139-8

    Google Scholar 

  • Nakano, T.: Time-temperature superposition principle on relaxation behavior of wood as a multi-phase material. Holz Roh- Werkst. 53, 39–42 (1995)

    Article  Google Scholar 

  • Nakao, S., Nakano, T.: Analysis of molecular dynamics of moist wood components by applying the stretched exponential function. J. Mater. Sci. 46, 4748–4758 (2011)

    Article  Google Scholar 

  • Ohgama, T., Yamada, T.: Elastic modulus of porous materials. Mokuzai Gakkaishi 20, 166–171 (1974) (in Japanese)

    Google Scholar 

  • Salmén, L.: Viscoelastic properties of in situ lignin under water-saturated conditions. J. Mater. Sci. 19, 3090–3096 (1984)

    Article  Google Scholar 

  • Salmén, L., Olsson, A.-M.: Interaction between hemicelluloses, lignin, and cellulose: structure–property relationship. J. Pulp Pap. Sci. 24, 99–103 (1998)

    Google Scholar 

  • Samarasinghe, S., Loferski, J.R., Holzer, S.M.: Creep modeling of wood using time–temperature superposition. Wood Fiber 26, 122–130 (1994)

    Google Scholar 

  • Simon, P.P., Ploehin, H.J.: Investigating time–temperature superpositioning in crosslinked polymers using the tube-junction model. J. Polym. Sci. 37, 127–142 (1999)

    Article  Google Scholar 

  • Stephen, S., Kelley, S., Timothy, G.P., Glasser, W.G.: Relaxation behaviour of the amorphous components of wood. J. Mater. Sci. 22, 617–624 (1987)

    Article  Google Scholar 

  • Tajvidi, M., Falk, R.H., Hermanson, J.C.: Time–temperature superposition principle applied to a kenaf-fiber/high-density polyethylene composite. J. Appl. Polym. Sci. 97, 1995–2004 (2005)

    Article  Google Scholar 

  • Tschoegl, N.W., Knauss, W.G., Emri, I.: The effect of temperature and pressure on the mechanical properties of thermo- and/or piezorheologically simple polymeric materials in thermodynamic equilibrium—a critical review. Mech. Time-Depend. Mater. 6, 53–99 (2002)

    Article  Google Scholar 

  • Tsubaki, T., Nakano, T.: Creep behavior of bamboo under various desorption conditions. Holzforschung 64, 489–493 (2010)

    Article  Google Scholar 

  • Voight, W.: Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper. Wied. Ann. 38, 573–587 (1889)

    Article  Google Scholar 

  • Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  • Yoshitomi, T., Nagamatsu, K., Kosjiyama, K.: On the stress relaxation of nylon 6. J. Polym. Sci. 27, 335–347 (1958)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takato Nakano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, T. Applicability condition of time–temperature superposition principle (TTSP) to a multi-phase system. Mech Time-Depend Mater 17, 439–447 (2013). https://doi.org/10.1007/s11043-012-9195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-012-9195-8

Keywords

Navigation