Skip to main content
Log in

Straining and relaxation properties of wet paper during heating

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The influence of increasing temperature on the strength and relaxation of wet press-dry paper was studied using a tensile tester equipped with a special heating chamber. The heating chamber made fast heating possible without detectable moisture loss. The results showed that temperature had a significant influence on the straining, relaxation and re-straining behavior of wet paper. The majority of observed changes due to increased temperature seem to originate from the softening of wet fibers. The observed short time scale phenomena in wet paper have practical significance for fiber webs dried under tension in paper machines. Straining–relaxation–de-straining cycles were used to analyze the effect of heating on the work of straining and apparent plastic and elastic work. Heating affected the amount of mechanical energy absorbed by the sample and the amount of elastic energy recoverable in a straining–relaxation–de-straining cycle. Increased temperature reduced the work of straining and both elastically and plastically absorbed energy. The hysteresis work of the examined wet papers was estimated to correspond to a 1–22 mK temperature change. This suggests that temperature changes in wet paper induced by straining play no role in practice. After mechanical conditioning, tensile stiffness in the re-straining of wet paper depended only marginally on temperature, whereas in initial straining the effect of temperature was clearly stronger. The linear thermal expansion coefficient of wet paper in the machine direction was estimated and the influence of moisture content on the linear thermal expansion coefficient of paper was found to be relatively small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alfthan, J., Gudmundson, P., Östlund, S.: A micro-mechanical model for mechano-sorptive creep in paper. J. Pulp Pap. Sci. 28(3), 98–104 (2002)

    Google Scholar 

  • Andersson, O., Berkyto, E.: Some factors affecting the stress–strain characteristics of paper. Sven. Papp.tidn. 54(13), 437–444 (1951)

    Google Scholar 

  • Back, E.L., Andersson, L.I.: The effect of temperature on wet web strength properties. In: Pan-Pacific Pulp and Paper Technology Conference, vol. B, pp. 141–150 (1992)

    Google Scholar 

  • Barker, R.E.: An approximate relation between elastic moduli and thermal expansivities. J. Appl. Phys. 34(1), 107–116 (1963)

    Article  MathSciNet  Google Scholar 

  • Batchhelor, W.J., Wu, Z., Johnston, R.E.: Measurement of z-direction moisture transport and shrinkage in the drying of paper. Appita J. 57(2), 107–111 (2004)

    Google Scholar 

  • Batten, G.L., Nissan, A.H.: Unified theory of the mechanical properties of paper and other H-bond dominated solids—Part I. Tappi J. 70(9), 119–123 (1987)

    Google Scholar 

  • Benson, R.: Effects of relative humidity and temperature on tensile stress–strain properties of kraft linerboard. Tappi J. 54(5), 699–703 (1971)

    Google Scholar 

  • Borodulina, S., Kulachenko, A., Galland, S., Nygårds, M.: Stress–strain curve of paper revisited. Nord. Pulp Pap. Res. J. 27(2), 318–328 (2012)

    Article  Google Scholar 

  • Caulfield, D.: Effect of moisture and temperature on the mechanical properties of paper. In: Perkins, R.W., Mark, R.E., Thorpe, J.L. (eds.) Solid Mechanics Advances in Paper Related Industries. Proceedings of National Science Foundation Workshop, pp. 50–62. Syracuse University Press, Syracuse (1986)

    Google Scholar 

  • Coffin, D.W.: Developing a deeper understanding of the constitutive behaviour of paper. In: I’Anson, S.J. (ed.) Advances in Pulp and Paper Research, vol. 2, pp. 841–875. The Pulp and Paper Fundamental Research Society, Oxford (2009)

    Google Scholar 

  • Craven, B.D.: Stress relaxation and work hardening in paper. Appita J. 16(2), 57–70 (1962)

    MathSciNet  Google Scholar 

  • de Ruvo, A., Lundberg, R., Martin-Löf, S., Söremark, C.: Influence of temperature and humidity on the elastic and expansional properties of paper and the constituent fibre. In: Bolam, F. (ed.) The Fundamental Properties of Paper Related to Its Uses, Transactions of the Symposium 1973, vol. 2, pp. 785–806. Technical Division of the British Paper and Board Industry Federation, London (1976)

    Google Scholar 

  • DeMaio, A., Patterson, T.: Influence of bonding on the tensile creep behavior of paper in a cyclic humidity environment. Mech. Time-Depend. Mater. 10, 17–33 (2006)

    Article  Google Scholar 

  • Dougherty, R.C.: Temperature and pressure dependence of hydrogen bond strength: a perturbation molecular orbital approach. J. Chem. Phys. 109, 7372–7378 (1998)

    Article  Google Scholar 

  • Dumbleton, D.P., Kringstad, K.P., Söremark, C.: Temperature profiles in paper during straining. Sven. Papp.tidn. 76(14), 521–528 (1973)

    Google Scholar 

  • Hyll, C., Vomhoff, H., Nygårds, M.: Analysis of the plastic and elastic energy during the deformation and rupture of a paper sample using thermography. Nord. Pulp Pap. Res. J. 27(2), 329–334 (2012)

    Article  Google Scholar 

  • Ebeling, K.I.: Distribution of energy consumption during straining of paper. Ph.D. thesis, Lawrence University Appleton, Wisconsin, USA (1970)

  • Ebeling, K.I.: Distribution of energy consumption during the straining of paper. In: Bolam, F. (ed.) The Fundamental Properties of Paper Related to Its Uses, Transactions of the Symposium 1973, vol. 1, pp. 305–335. Technical Division of the British Paper and Board Industry Federation, London (1976)

    Google Scholar 

  • Goring, D.A.I.: Thermal softening, adhesive properties and glass transitions in lignin, hemicellulose and cellulose. In: Bolam, F. (ed.) Consolidation of the Paper Web, Transactions of the Symposium 1965, vol. 1, pp. 555–568. Technical Section of the British Paper and Board Makers’ Association, London (1966)

    Google Scholar 

  • Göttsching, L., Baumgarten, H.L.: Triaxial deformation of paper under tensile load. In: Bolam, F. (ed.) The Fundamental Properties of Paper Related to Its Uses, Transactions of the Symposium 1973, vol. 1, pp. 227–249. Technical Division of the British Paper and Board Industry Federation, London (1976)

    Google Scholar 

  • Habeger, C.C., Coffin, D.W.: The role of stress concentrations in accelerated creep and sorption induced physical aging. J. Pulp Pap. Sci. 26(4), 145–157 (2000)

    Google Scholar 

  • Haslach, H.W., Abdullahi, Z.: Thermally cycled creep of paper. In: Perkins, R.W. (ed.) Mechanics of Cellulosic Materials, pp. 13–22. ASME, New York (1995)

    Google Scholar 

  • Heikkilä, P., Paltakari, J.: Fundamentals of paper drying. In: Karlsson, M. (ed.) Papermaking Part 2: Drying, 2nd edn., pp. 40–77. Paper Engineers’ Association, Espoo (2010)

    Google Scholar 

  • Htun, M.: The influence of drying time and temperature on drying stress and related mechanical properties of paper. In: The Influence of Drying Strategies on the Mechanical Properties of Paper. Ph.D. Thesis, Department of Paper Technology, KTH, Sweden (1980)

  • Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, 5th edn. Wiley, New York (2002)

    Google Scholar 

  • Ionides, G.N., Jackson, M., Smith, M.K., Forgacs, O.L.: Factors influencing the strength properties of wet-webs. In: Fiber-Water Interactions in Paper-Making, Transactions of the Symposium 1977, vol. 1, pp. 357–374. Technical Division of the British Paper and Board Industry Federation, London (1978)

    Google Scholar 

  • Jantunen, J.: Visco-elastic properties of wet webs under dynamic conditions. In: Punton, V. (ed.) Papermaking Raw Materials, vol. 1, pp. 133–162. Mechanical Engineering Publications Ltd., New York (1985)

    Google Scholar 

  • Johansson, F., Kubát, J., Pattyranie, C.: Internal stresses, dimensional stability and deformation of paper. Sven. Papp.tidn. 70(10), 333–338 (1967)

    Google Scholar 

  • Kekko, P., Kouko, J., Retulainen, E., Timonen, J.: Effects of strain rate on the stress relaxation of wet paper. In: Considine, J.M., Ralph, S.A. (eds.) Proceedings of the Sixth International Symposium: Moisture and Creep Effects on Paper, Board and Containers, Madison, Wisconsin, USA, 2009, pp. 49–58. USDA, Washington (2011)

    Google Scholar 

  • Keränen, J.T., Paaso, J., Timofeev, O., Kiiskinen, H.: Moisture and temperature measurement of paper in the thickness direction. Appita J. 62(4), 308–313 (2009)

    Google Scholar 

  • Kiiskinen, H.T., Lyytikäinen, K., Hämäläinen, J.P.: Specific heats of dry Scandinavian wood pulps. J. Pulp Pap. Sci. 24(7), 219–223 (1998)

    Google Scholar 

  • Kouko, J., Kekko, P., Kurki, M.: Effect of strain rate on strength properties of paper. In: Coffin, D. (ed.) Proceedings of the 2006 Progress in Paper Physics—A Seminar, pp. 90–94. Miami University, Oxford, OH (2006)

    Google Scholar 

  • Kouko, J., Salminen, K., Kurki, M.: Laboratory scale measurement procedure for the runnability of a wet web on a paper machine. Part 2. Pap. Puu 89(7–8), 424–430 (2007)

    Google Scholar 

  • Kubát, J.: Stress relaxation in solids. Nature 205, 378–379 (1965)

    Article  Google Scholar 

  • Kubát, J.: Rheology of paper. In: Eirich, F.R. (ed.) Rheology: Theory and Applications, vol. 5, pp. 547–602. Academic Press, New York (1969)

    Chapter  Google Scholar 

  • Kubát, J., Martin-Löf, S., Söremark, C.: Thermal expansivity and elasticity of paper and board. Sven. Papp.tidn. 72(23), 763–767 (1969)

    Google Scholar 

  • Kubát, J., Nyborg, L., Steenberg, B.: Response of paper to low frequency sinusoidal strain. Sven. Papp.tidn. 66(19), 754–764 (1963)

    Google Scholar 

  • Kulachenko, A., Uesaka, T.: Direct simulations of fiber network and failure. Mech. Mater. 51, 1–14 (2012)

    Article  Google Scholar 

  • Mardon, J., Short, R.J.: Wet web strength related to papermaking. Part I. Pap. Puu 53(4a), 203–215 (1971)

    Google Scholar 

  • Niskanen, K.: Rheology and moisture effects. In: Niskanen, K. (ed.) Paper Physics, vol. 16, pp. 260–283. Paper Engineers’ Association, Espoo (1998)

    Google Scholar 

  • Nissan, A.H., Sternstein, S.S.: Cellulose as a viscoelastic material. Pure Appl. Chem. 5, 131–146 (1962)

    Article  Google Scholar 

  • Pakarinen, P., Kiiskinen, H., Kekko, P., Paltakari, J.: Drying and paper quality. In: Karlsson, M. (ed.) Papermaking Part 2: Drying, 2nd edn. pp. 238–295. Paper Engineers’ Association, Espoo (2010)

    Google Scholar 

  • Robertson, A.A.: Modification of the mechanical properties of paper by the addition of synthetic polymers. In: Bolam, F. (ed.) The Fundamental Properties of Paper Related to Its Uses, Transactions of the Symposium 1973, vol. 1, pp. 373–390. Technical Division of the British Paper and Board Industry Federation, London (1976)

    Google Scholar 

  • Salmén, L.: Responses of paper properties to changes in moisture content and temperature. In: Baker, C.F. (ed.) Products of Papermaking, vol. 1, pp. 369–430. Pira International, Leatherhead (1993)

    Google Scholar 

  • Seth, R.J., Page, D.H.: The stress–strain curve of paper. In: Brander, J. (ed.) The Role of Fundamental Research in Paper Making, vol. 1, pp. 421–452. Mechanical Engineering Publications Ltd., New York (1983)

    Google Scholar 

  • Setterholm, V.C.: Factors that affect the stiffness of paper. In: Bolam, F. (ed.) Fundamental Properties of Paper Related to Its Uses, Transactions of the Symposium 1973, vol. 1, pp. 253–266. Technical Division of the British Paper and Board Industry Federation, London (1976)

    Google Scholar 

  • Skowronski, J., Robertson, A.A.: The deformation properties of paper: tensile strain and recovery. J. Pulp Pap. Sci. 12(1), 20–25 (1986)

    Google Scholar 

  • Tanaka, A., Otsuka, Y., Yamauchi, T.: In-plane fracture toughness testing of paper using thermography. Tappi J. 80(5), 222–226 (1997)

    Google Scholar 

  • Wagner, W., Pruß, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31(2), 387–535 (2002)

    Article  Google Scholar 

  • Weise, U.: Characterization and mechanisms of changes in wood pulp fibres caused by water removal. Ph.D. Thesis, Helsinki University of Technology, Finland (1997)

  • White, F.: Fluid Mechanics, 3rd edn. McGraw-Hill, New York (1994)

    Google Scholar 

  • Wiklund, H.S., Uesaka, T.: Simulations of shearing of capillary bridges. J. Chem. Phys. 136, 094703 (2012)

    Article  Google Scholar 

  • Yamauchi, T., Murakami, K.: Observation of deforming and fracturing process of paper by use of thermography. In: Baker, C.F. (ed.) Products of Papermaking, vol. 2, pp. 825–847. Pira International, Leatherhead (1993)

    Google Scholar 

  • Yamauchi, T., Okumura, S., Noguchi, M.: Acoustic emission as an aid for investigating the deformation and fracture of paper. J. Pulp Pap. Sci. 16, 44–47 (1990)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Valmet Technologies Oy for financial support. Joonas Sorvari is gratefully acknowledged for his assistance with LaTeX formatting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarmo Kouko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouko, J., Retulainen, E. & Kekko, P. Straining and relaxation properties of wet paper during heating. Mech Time-Depend Mater 18, 697–719 (2014). https://doi.org/10.1007/s11043-014-9246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-014-9246-4

Keywords

Navigation