Skip to main content
Log in

Complex order fractional derivatives in viscoelasticity

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

We introduce complex order fractional derivatives in models that describe viscoelastic materials. This cannot be carried out unrestrictedly, and therefore we derive, for the first time, real valued compatibility constraints, as well as physical constraints that lead to acceptable models. As a result, we introduce a new form of complex order fractional derivative. Also, we consider a fractional differential equation with complex derivatives, and study its solvability. Results obtained for stress relaxation and creep are illustrated by several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amendola, G., Fabrizio, M., Golden, J.M.: Thermodynamics of Materials with Memory. Springer, New York (2012)

    Book  MATH  Google Scholar 

  • Atanacković, T.M., Konjik, S., Oparnica, Lj., Zorica, D.: Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. Abstr. Appl. Anal. 2011, 975694 (2011)

    MathSciNet  MATH  Google Scholar 

  • Atanacković, T.M., Stanković, B.: An expansion formula for fractional derivatives and its applications. Fract. Calc. Appl. Anal. 7(3), 365–378 (2004)

    MathSciNet  MATH  Google Scholar 

  • Atanacković, T.M., Stanković, B.: On a numerical scheme for solving differential equations of fractional order. Mech. Res. Commun. 35, 429–438 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Atanacković, T.M., Pilipović, S., Stanković, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. Wiley-ISTE, London (2014)

    Book  MATH  Google Scholar 

  • Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986)

    Article  MATH  Google Scholar 

  • Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II) 1, 161–198 (1971a)

    Article  Google Scholar 

  • Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(1), 134–147 (1971b)

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen, A.M.: Numerical Methods for Laplace Transform Inversion. Springer, New York (2010)

    Google Scholar 

  • Day, W.A.: The Thermodynamics of Simple Materials with Fading Memory. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  • Doetsch, G.: Handbuch der Laplace-Transformationen I. Birkhäuser, Basel (1950)

    Book  MATH  Google Scholar 

  • Fabrizio, M., Lazzari, B.: Stability and Second Law of Thermodynamics in dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 74, 484–489 (2014)

    Article  Google Scholar 

  • Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  • Gonsovski, V.L., Rossikhin, Yu.A.: Stress waves in a viscoelastic medium with a singular hereditary kernel. J. Appl. Mech. Tech. Phys. 14, 595–597 (1973)

    Article  Google Scholar 

  • Hanyga, A.: Long-range asymptotics of a step signal propagating in a hereditary viscoelastic medium. Q. J. Mech. Appl. Math. 60(2), 85–98 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Hanyga, A.: Multi-dimensional solutions of space-time-fractional diffusion equations. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 458(2018), 429–450 (2002a)

    Article  MathSciNet  MATH  Google Scholar 

  • Hanyga, A.: Multidimensional solutions of time-fractional diffusion-wave equations. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 458(2020), 933–957 (2002b)

    Article  MathSciNet  MATH  Google Scholar 

  • Jaishankar, A., McKinley, G.H.: Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 469, 20120284 (2012)

    Article  MathSciNet  Google Scholar 

  • Love, E.R.: Fractional derivatives of imaginary order. J. Lond. Math. Soc. 2(2–3), 241–259 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  • Machado, J.A.T.: Optimal controllers with complex order derivatives. J. Optim. Theory Appl. 156(1), 2–12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  • Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187(1), 295–305 (2007)

    MathSciNet  MATH  Google Scholar 

  • Makris, N.: Complex-parameter Kelvin model for elastic foundations. Earthq. Eng. Struct. Dyn. 23(3), 251–264 (1994)

    Article  Google Scholar 

  • Makris, N., Constantinou, M.: Models of viscoelasticity with complex-order derivatives. J. Eng. Mech. 119(7), 1453–1464 (1993)

    Article  Google Scholar 

  • Rossikhin, Yu.A., Shitikova, M.V.: A new method for solving dynamic problems of fractional derivative viscoelasticity. Int. J. Eng. Sci. 39(2), 149–176 (2001a)

    Article  Google Scholar 

  • Rossikhin, Yu.A., Shitikova, M.V.: Analysis of rheological equations involving more than one fractional parameters by the use of the simplest mechanical systems based on these equations. Mech. Time-Depend. Mater. 5(2), 131–175 (2001b)

    Article  Google Scholar 

  • Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)

    MATH  Google Scholar 

  • Vladimirov, V.S.: Equations of Mathematical Physics. Mir Publishers, Moscow (1984)

    MATH  Google Scholar 

  • Zingales, M.: A mechanical description of anomalous time evolution: fractional hereditariness, heat transport and mass diffusion. Mechanics through Mathematical Modelling, Book of abstracts, Novi Sad (2015)

Download references

Acknowledgements

We would like to thank Marko Janev for several helpful discussions on the subject.

This work is supported by Projects 174005 and 174024 of the Serbian Ministry of Science, and 114-451-1084 of the Provincial Secretariat for Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Konjik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanacković, T.M., Konjik, S., Pilipović, S. et al. Complex order fractional derivatives in viscoelasticity. Mech Time-Depend Mater 20, 175–195 (2016). https://doi.org/10.1007/s11043-016-9290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-016-9290-3

Keywords

Navigation