Skip to main content
Log in

Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In this work, a novel generalized model of photothermal theory with two-temperature thermoelasticity theory based on memory-dependent derivative (MDD) theory is performed. A one-dimensional problem for an elastic semiconductor material with isotropic and homogeneous properties has been considered. The problem is solved with a new model (MDD) under the influence of a mechanical force with a photothermal excitation. The Laplace transform technique is used to remove the time-dependent terms in the governing equations. Moreover, the general solutions of some physical fields are obtained. The surface taken into consideration is free of traction and subjected to a time-dependent thermal shock. The numerical Laplace inversion is used to obtain the numerical results of the physical quantities of the problem. Finally, the obtained results are presented and discussed graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(\lambda, \mu\) :

Counterparts of Lame’s parameters

\(N_{0}\) :

Equilibrium carrier concentration at temperature \(T\)

\(\delta_{n}\) :

The difference of deformation potential of conduction and valence band, \(\theta = T - T_{0}\) Thermodynamic temperature deviation

\(\phi = \phi - T_{0}\) :

Conductive temperature deviation

\(a\) :

Two-temperature parameter

\(T\) :

Absolute temperature

\(T_{0}\) :

Temperature of the medium in its natural state assumed to be \(|\frac{\theta}{T_{0}} |\ll 1\)

\(\phi\) :

Conductive absolute temperature

\(\gamma = (3\lambda + 2\mu )\alpha_{T}\) :

The volume thermal expansion

\(\sigma_{ij}\) :

Components of the stress tensor

\(\rho\) :

Density of the medium

\(\alpha_{T}\) :

The coefficient of linear thermal expansion

\(e\) :

Cubical dilatation

\(\tau_{0}\) :

Thermal relaxation time

\(C_{e}\) :

Specific heat at constant strain of the solid plate

\(k\) :

The thermal conductivity of the sample

\(D_{E}\) :

The carrier diffusion coefficient

\(\tau\) :

The photogenerated carrier lifetime

\(E_{g}\) :

The energy gap of the semiconductor

References

  • Ackerman, C.C., Overtone, W.C.: Second sound in helium-3. Phys. Rev. Lett. 22, 764–766 (1969)

    Article  Google Scholar 

  • Ackerman, C.C., Bartman, B., Fairbank, H.A., Guyer, R.A.: Second sound in helium. Phys. Rev. Lett. 16, 789–791 (1966)

    Article  Google Scholar 

  • Bachher, M., Sarkar, N., Lahiri, A.: Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer. Int. J. Mech. Sci. 89, 84–91 (2014)

    Article  Google Scholar 

  • Biot, M.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  • Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)

    Article  Google Scholar 

  • Chandrasekharaiah, D.S.: Thermoelasticity with second sound-a review. Appl. Mech. Rev. 39, 355–376 (1986)

    Article  MATH  Google Scholar 

  • Chen, P.J., Gurtin, M.E., Williams, W.O.: A note on non-simple heat conduction. Z. Angew. Math. Phys. 19, 969–970 (1968)

    Article  Google Scholar 

  • Chen, P.J., Gurtin, M.E., Williams, W.O.: On the thermodynamics of nonsimple elastic materials with two temperatures. Z. Angew. Math. Phys. 20, 107–112 (1969)

    Article  MATH  Google Scholar 

  • Chen, J.K., Beraun, J.E., Tham, C.L.: Ultrafast thermoelasticity for short-pulse laser heating. Int. J. Eng. Sci. 42, 793–807 (2004)

    Article  Google Scholar 

  • Christofides, C., Othonos, A., Loizidou, E.: Influence of temperature and modulation frequency on the thermal activation coupling term in laser photothermal theory. J. Appl. Phys. 92, 1280 (2002)

    Article  Google Scholar 

  • Dhaliwal, R.S., Sherief, H.H.: Generalized thermoelasticity for anisotropic media. Q. Appl. Math. 38, 1–8 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Diethelm, K.: Analysis of Fractional Differential Equation: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  • El-Karamany, A.S., Ezzat, M.A.: On fractional thermoelasticity. Math. Mech. Solids 16, 334–346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat, M.A.: Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Physica B 405, 4188–4194 (2010)

    Article  Google Scholar 

  • Ezzat, M.A., El-Karaman, A.S.: Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures. Z. Angew. Math. Phys. 62, 937–952 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat, M.A., El-Karaman, A.S.: Fractional thermoelectric viscoelastic materials. J. Appl. Polym. Sci. 124, 2187–2199 (2012)

    Article  Google Scholar 

  • Ezzat, M., El-Karamany, A., El-Bary, A.: Generalized thermo-viscoelasticity with memory-dependent derivatives. Int. J. Mech. Sci. 89, 470–475 (2014)

    Article  Google Scholar 

  • Ezzat, M., El-Karamany, A.S., El-Bary, A.: Generalized thermoelasticity with memory-dependent derivatives involving two temperatures. Mech. Adv. Mat. Struct. 23, 545–553 (2016)

    Article  Google Scholar 

  • Gordon, J.P., Leite, R.C.C., Moore, R.S., Porto, S.P.S., Whinnery, J.R.: Long-transient effects in lasers with inserted liquid samples. Bull. Am. Phys. Soc. 119, 501 (1964)

    Google Scholar 

  • Green, A.E., Lindsay, K.A.: Thermoelast. J. Elast. 2, 1–7 (1972)

    Article  Google Scholar 

  • Guyer, R.A., Krumhansal, J.A.: Thermal conductivity, second sound and phonon, hydrodynamic phenomenon in non-metallic crystals. Phys. Rev. 148, 778–788 (1966)

    Article  Google Scholar 

  • Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity. J. Therm. Stresses 22, 45–476 (1999)

    MathSciNet  MATH  Google Scholar 

  • Honig, G., Hirdes, U.: A method for the numerical inversion of the Laplace transform. J. Comput. Appl. Math. 10, 113–132 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Kreuzer, L.B.: Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 42, 29–34 (1971)

    Article  Google Scholar 

  • Lord, H.W., Shulman, Y.: The generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  • Lotfy, Kh.: Studied the elastic wave motions for a photothermal medium of a dual-phase-lag model with an internal heat source and gravitational field. Can. J. Phys. 94, 1–10 (2016)

    Article  Google Scholar 

  • Mandelis, A., Nestoros, M., Christofides, C.: Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperature. Opt. Eng. 36, 459 (1997)

    Article  Google Scholar 

  • Povstenko, Y.: Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses. Mech. Res. 37, 436–440 (2010)

    Article  MATH  Google Scholar 

  • Quintanilla, T.Q., Tien, C.L.: Heat transfer mechanism during short-pulse laser heating of metals. ASME J. Heat Transf. 115, 835–841 (1993)

    Article  Google Scholar 

  • Sarkar, N., Lahiri, A.: Eigenvalue approach to two-temperature magneto-thermoelasticity. Vietnam J. Math. 40, 13–30 (2012)

    MathSciNet  MATH  Google Scholar 

  • Song, Y.Q., Todorovic, D.M., Cretin, B., Vairac, P.: Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. Int. J. Solids Struct. 47, 1871 (2010)

    Article  MATH  Google Scholar 

  • Song, Y.Q., Bai, J.T., Ren, Z.Y.: Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta Mech. 223, 1545 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Tam, A.C.: Ultrasensitive Laser Spectroscopy, pp. 1–108. Academic Press, New York (1983)

    Book  Google Scholar 

  • Tam, A.C.: Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381 (1986)

    Article  Google Scholar 

  • Tam, A.C.: Photothermal Investigations in Solids and Fluids, pp. 1–33. Academic Press, Boston (1989)

    Google Scholar 

  • Todorovic, D.M.: Plasma, thermal, and elastic waves in semiconductors. Rev. Sci. Instrum. 74, 582 (2003)

    Article  Google Scholar 

  • Todorovic, D.M., Nikolic, P.M., Bojicic, A.I.: Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors. J. Appl. Phys. 85, 7716 (1999)

    Article  Google Scholar 

  • Vasil’ev, A.N., Sandomirskii, V.B.: Photoacoustic effects in finite semiconductors. Sov. Phys. Semicond. 18, 1095 (1984)

    Google Scholar 

  • Wang, J., Li, H.: Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput. Math. Appl. 62, 1562–1567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Youssef, H.M.: Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71, 383–390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Youssef, H.M., Al-Lehaibi, E.A.: State-space approach of two-temperature generalized thermoelasticity of one-dimensional problem. Int. J. Solids Struct. 44, 1550–1562 (2007)

    Article  MATH  Google Scholar 

  • Yu, Y-J., Hu, W., Tian, X-G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 2014(811), 23–134 (2014)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lotfy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfy, K., Sarkar, N. Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature. Mech Time-Depend Mater 21, 519–534 (2017). https://doi.org/10.1007/s11043-017-9340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-017-9340-5

Keywords

Navigation