Skip to main content
Log in

Linearly implicit time integration methods in real-time applications: DAEs and stiff ODEs

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The methods for the dynamical simulation of multi-body systems in real-time applications have to guarantee that the time integration of the equations of motion is always successfully completed within an a priori fixed sampling time interval, typically in the range of 1.0–10.0 ms. Model structure, model complexity and numerical solution methods have to be adapted to the needs of real-time simulation. Standard solvers for stiff and for constrained mechanical systems are implicit and cannot be used straightforwardly in real-time applications because of their iterative strategies to solve the nonlinear corrector equations and because of adaptive strategies for stepsize and order selection. As an alternative, we consider in the present paper noniterative fixed stepsize time integration methods for stiff ordinary differential equations (ODEs) resulting from tree-structured multi-body system models and for differential algebraic equations (DAEs) that result from multi-body system models with loop-closing constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garcíade Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-time Challenge. Springer-Verlag, New York (1994)

    Google Scholar 

  2. Rill, G.: Simulation von Kraftfahrzeugen. Fundamentals and Advances in the Engineering Sciences. Vieweg, Braunschweig Wiesbaden (1994)

    Google Scholar 

  3. Rill, G.: A modified implicit Euler algorithm for solving vehicle dynamic equations. Multibody Syst. Dyn. 15, 1–24 (2006)

    Article  MATH  Google Scholar 

  4. Steihaug, T., Wolfbrandt, A.: An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff differential equations. Math.Comp. 33, 521–534 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Esterl, B., Butz, T., Simeon, B., Burgermeister, B.: Real-time capable vehicle-trailer coupling by algorithms for differential-algebraic equations. Technical Report 14/2005, Munich University of Technology, Preprints on Numerical Mathematics. To appear in: Vehicle Syst. Dynam. (2007)

  6. Eichberger, A., Rulka, W.: Process save reduction by macro joint approach: the key to real time and efficient vehicle simulation. Vehicle Syst. Dyn. 41, 401–413 (2004)

    Article  Google Scholar 

  7. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer—Verlag, Berlin, Heidelberg, New York (1996)

    MATH  Google Scholar 

  8. Wensch, J., Strehmel, K., Weiner, R.: A class of linearly-implicit Runge—Kutta methods for multibody systems. Appl. Numer. Math. 22, 381–398 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Meijaard, J.P.: Application of Runge-Kutta-Rosenbrock methods to the analysis of flexible multibody systems. Multibody Syst. Dyn. 10, 263–288 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sandu, A., Negrut, D., Haug, E.J., Potra, F.A., Sandu, C.: A Rosenbrock—Nystrom state space implicit approach for the dynamic analysis of mechanical systems: I — theoretical formulation. Proc.Inst.Mech.Eng. Part K: J.Multi-body Dyn. 217, 263–271 (2003)

    Google Scholar 

  11. Negrut, D., Sandu, A., Haug, E.J., Potra, F.A., Sandu, C.: A Rosenbrock—Nystrom state space implicit approach for the dynamic analysis of mechanical systems: II — method and numerical examples. Proc.Inst.Mech.Eng. Part K: J.Multi-body Dyn. 217, 273–281 (2003)

    Google Scholar 

  12. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  13. Burgermeister, B.: Echtzeitfähige Zeitintegration von differentiell-algebraischen Systemen in der Mehrkörperdynamik. Masters Thesis, Munich University of Technology, Department of Mathematics (2003)

  14. Burgermeister, B., Arnold, M., Esterl, B.: DAE time integration for real-time applications in multi-body dynamics. Z. Angew. Math. Mech. 86, 759–771 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dopico, D., Lugris, U., Gonzalez, M., Cuadrado, J.: Two implementations of IRK integrators for real-time multibody dynamics. Int.J.Numer.Meth.Eng. 65, 2091–2111 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kortüm, W., Lugner, P.: Systemdynamik und Regelung von Fahrzeugen. Springer—Verlag, Berlin, Heidelberg, New York (1994)

    Google Scholar 

  17. Popp, P., Schiehlen, W.O.: Fahrzeugdynamik. Teubner, Stuttgart (1993)

    Google Scholar 

  18. Roberson, R.E., Schwertassek, R.: Dynamics of Multibody Systems. Springer—Verlag, Berlin, Heidelberg, New York (1988)

    MATH  Google Scholar 

  19. Eichberger, A.: Transputer-based multibody system dynamic simulation: Part I. The residual algorithm — a modified inverse dynamic formulation. Mech. Struct. Mach. 22, 211–237 (1994)

    Article  Google Scholar 

  20. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. Teubner—Verlag, Stuttgart (1998)

    MATH  Google Scholar 

  21. Arnold, M.: Simulation algorithms and software tools. Accepted for publication in Mastinu, G., Plöchl, M. (eds.) Road and Off-Road Vehicle System Dynamics Handbook. Taylor & Francis, London (2007)

  22. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential—Algebraic Equations, 2nd edn. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  23. Arnold, M., Fuchs, A., Führer, C.: Efficient corrector iteration for DAE time integration in multibody dynamics. Comp. Meth. Appl. Mech. Eng. 195, 6958–6973 (2006)

    Article  MATH  Google Scholar 

  24. Weiner, R., Arnold, M., Rentrop, P., Strehmel, K.: Partitioning strategies in Runge—Kutta type methods. IMA J. Numer. Anal. 13, 303–319 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schiela, A., Bornemann, F.: Sparsing in real time simulation. Z. Angew. Math. Mech. 83, 637–647 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weiner, R.: Private communication (2006)

  27. Mazzia, F., Iavernaro, F.: Test set for IVP solvers. http://pitagora.dm.uniba.it/testset/

  28. Lubich, Ch., Engstler, Ch., Nowak, U., Pöhle, U.: Numerical integration of constrained mechanical systems using MEXX. Mech. Struct. Mach. 23, 473–495 (1995)

    Article  Google Scholar 

  29. Rulka, W.: Effiziente Simulation der Dynamik mechatronischer Systeme für industrielle Anwendungen. Dissertation, Vienna University of Technology, Department of Mechanical Engineering (1998)

  30. Ascher, U.M., Chin, H., Reich, S.: Stabilization of DAEs and invariant manifolds. Numer. Math. 67, 131–149 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rulka, W., Pankiewicz, E.: MBS approach to generate equations of motions for HiL—simulations in vehicle dynamics. Multibody Syst. Dyn. 14, 367–386 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Arnold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, M., Burgermeister, B. & Eichberger, A. Linearly implicit time integration methods in real-time applications: DAEs and stiff ODEs. Multibody Syst Dyn 17, 99–117 (2007). https://doi.org/10.1007/s11044-007-9036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-007-9036-8

Keywords

Navigation