Skip to main content
Log in

Energy-momentum conserving integration of multibody dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A rotationless formulation of multibody dynamics is presented, which is especially beneficial to the design of energy-momentum conserving integration schemes. The proposed approach facilitates the stable numerical integration of the differential algebraic equations governing the motion of both open-loop and closed-loop multibody systems. A coordinate augmentation technique for the incorporation of rotational degrees of freedom and associated torques is newly proposed. Subsequent to the discretization, size-reductions are performed to lower the computational costs and improve the numerical conditioning. In this connection, a new approach to the systematic design of discrete null space matrices for closed-loop systems is presented. Two numerical examples are given to evaluate the numerical properties of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angeles, J.: Fundamentals of Robotic Mechanical Systems, 2nd edn. Springer-Verlag, Germany (2003)

    Google Scholar 

  2. Armero, F.: Energy-dissipative momentum-conserving time-stepping algorithms for finite strain multiplicative plasticity. Comput. Methods Appl. Mech. Eng. 195, 4862–4889 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauchau, O.A., Bottasso, C.L.: On the design of energy preserving and decaying schemes for flexible, nonlinear multi-body systems. Comput. Methods Appl. Mech. Eng. 169, 61–79 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betsch, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part I: Holonomic constraints. Comput. Methods Appl. Mech. Eng. 194(50–52), 5159–5190 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Betsch, P.: On the discretization of geometrically exact shells for flexible multibody dynamics. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics (on CD), pp. 1–13, Madrid, Spain, 21–24 June 2005

  7. Betsch, P.: Energy-consistent numerical integration of mechanical systems with mixed holonomic and nonholonomic constraints. Comput. Methods Appl. Mech. Eng. 195, 7020–7035 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Betsch, P., Leyendecker, S.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: Multibody dynamics. Int. J. Numer. Methods Eng. 67(4), 499–552 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Betsch, P., Steinmann, P.: Conservation properties of a time FE method. Part II: Time-stepping schemes for nonlinear elastodynamics. Int. J. Numer. Methods Eng. 50, 1931–1955 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Betsch, P., Steinmann, P.: Constrained integration of rigid body dynamics. Comput. Methods Appl. Mech. Eng. 191, 467–488 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Betsch, P., Steinmann, P.: Conservation properties of a time FE method. Part III: Mechanical systems with holonomic constraints. Int. J. Numer. Methods Eng. 53, 2271–2304 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Betsch, P., Steinmann, P.: A DAE approach to flexible multibody dynamics. Multibody Syst. Dyn. 8, 367–391 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bottasso, C.L., Croce, A.: Optimal control of multibody systems using an energy preserving direct transcription method. Multibody Syst. Dyn. 12(1), 17–45 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Brank, B., Briseghella, L., Tonello, N., Damjanic, F.B.: On non-linear dynamics of shells: implementation of energy-momentum conserving algorithm for a finite rotation shell model. Int. J. Numer. Methods Eng. 42, 409–442 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Crisfield, M.A., Jelenić, G.: Energy/momentum conserving time integration procedures with finite elements and large rotations. In: NATO-ARW on Compuational Aspects of Nonlinear Structures and Systems with Large Rigid Body Motion, Ambrósio, J., Kleiber, M. (eds.), pp. 181–200, Pultusk, Poland, 2–7 July 2000

  16. Garcia de Jalon, J., Unda, J., Avello, A.: Natural coordinates for the computer analysis of multibody systems. Comput. Methods Appl. Mech. Eng. 56, 309–327 (1986)

    Article  MATH  Google Scholar 

  17. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  18. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic, New York (1981)

    MATH  Google Scholar 

  19. Goicolea, J.M., Garcia Orden, J.C.: Dynamic analysis of rigid and deformable multibody systems with penalty methods and energy-momentum schemes. Comput. Methods Appl. Mech. Eng. 188, 789–804 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)

    MATH  MathSciNet  Google Scholar 

  21. Gonzalez, O.: Mechanical systems subject to holonomic constraints: differential-algebraic formulations and conservative integration. Physica D 132, 165–174 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gonzalez, O., Simo, J.C.: On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry. Comput. Methods Appl. Mech. Eng. 134, 197–222 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Greenspan, D.: Conservative numerical methods for x=f(x). J. Comput. Phys. 56, 28–41 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. Groş, M., Betsch, P., Steinmann, P.: Conservation properties of a time FE method. Part IV: Higher order energy and momentum conserving schemes. Int. J. Numer. Methods Eng. 63, 1849–1897 (2005)

    Article  Google Scholar 

  25. Ibrahimbegović, A., Mamouri, S., Taylor, R.L., Chen, A.J.: Finite element method in dynamics of flexible multibody systems: Modeling of holonomic constraints and energy conserving integration schemes. Multibody Syst. Dyn. 4(2–3), 195–223 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Khan, W.A., Krovi, V.N., Saha, S.K., Angeles, J.: Modular and recursive kinematics and dynamics for parallel manipulators. Multibody Syst. Dyn. 14(3–4), 419–455 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. European Mathematical Society, Zürich, Switzerland (2006)

  28. Laursen, T.A., Love, G.R.: Improved implicit integrators for transient impact problems — geometric admissibility withing the conserving framework. Int. J. Numer. Methods Eng. 53, 245–274 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge, UK (2004)

    MATH  Google Scholar 

  30. Leyendecker, S., Betsch, P., Steinmann, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics. To appear in Multibody Syst. Dyn.

  31. Leyendecker, S., Betsch, P., Steinmann, P.: Energy-conserving integration of constrained Hamiltonian systems — a comparison of approaches. Comput. Mech. 33(3), 174–185 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mohammadi Daniali, H.R., Zsombor-Murray, P.J., Angeles, J.: Singularity analysis of planar parallel manipulators. Mech. Mach. Theory 30(5), 665–678 (1995)

    Article  Google Scholar 

  33. Puso, M.A.: An energy and momentum conserving method for rigid-flexible body dynamics. Int. J. Numer. Methods Eng. 53, 1393–1414 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Romero, I., Armero, F.: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int. J. Numer. Methods Eng. 54, 1683–1716 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum, New York (1977)

    MATH  Google Scholar 

  36. Rubin, H., Ungar, P.: Motion under a strong constraining force. Commun. Pure Appl. Math. 10(1), 65–87 (1957)

    MATH  MathSciNet  Google Scholar 

  37. Saha, S.K.: Dynamics of serial multi-body systems using the decoupled natural orthogonal complement matrices. ASME J. Appl. Mech. 66, 986–996 (1999)

    Article  Google Scholar 

  38. Saha, S.K., Schiehlen, W.O.: Recursive kinematics and dynamics for parallel structured closed loop multibody systems. Mech. Struct. Mach. 29(2), 143–175 (2001)

    Article  Google Scholar 

  39. Simo, J.C., Tarnow, N.: The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z. Angew. Math. Phys. (ZAMP) 43, 757–792 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  40. Simo, J.C., Tarnow, N., Wong, K.K.: Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput. Methods Appl. Mech. Eng. 100, 63–116 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  41. Simo, J.C., Wong, K.K.: Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int. J. Numer. Methods Eng. 31, 19–52 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Betsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betsch, P., Uhlar, S. Energy-momentum conserving integration of multibody dynamics. Multibody Syst Dyn 17, 243–289 (2007). https://doi.org/10.1007/s11044-007-9043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-007-9043-9

Keywords

Navigation